Convex Consensus with Asynchronous Fallback

Andrei Constantinescu Diana Ghinea Roger Wattenhofer Floris Westermann

Distributed Computing Group

Why Convex Consensus?

(Almost) everything is convex if you believe!

n parties

n parties

n parties

n parties with inputs x_1, \ldots, x_n

n parties with inputs x_1, \ldots, x_n giving outputs y_1, \ldots, y_n

n parties with inputs $x_1, ..., x_n$ giving outputs $y_1, ..., y_n$

Unknown ≤ *t* parties are *byzantine*

n parties with inputs x_1, \ldots, x_n giving outputs y_1, \ldots, y_n

Unknown ≤ *t* parties are *byzantine*

n parties with inputs $x_1, ..., x_n$ giving outputs $y_1, ..., y_n$

Unknown $\leq t$ parties are *byzantine* (other $\geq n - t$ are *honest*)

n parties with inputs $x_1, ..., x_n$ giving outputs $y_1, ..., y_n$

Unknown $\leq t$ parties are *byzantine* (other $\geq n - t$ are *honest*)

Agreement: Honests output same y

n parties with inputs x_1, \ldots, x_n giving outputs y_1, \ldots, y_n

Unknown $\leq t$ parties are *byzantine* (other $\geq n - t$ are *honest*)

Agreement: Honests output same y

n parties with inputs x_1, \ldots, x_n giving outputs y_1, \ldots, y_n

Unknown $\leq t$ parties are *byzantine* (other $\geq n - t$ are *honest*)

Agreement: Honests output same y Validity: y is meaningful

n parties with inputs x_1, \ldots, x_n giving outputs y_1, \ldots, y_n

Unknown $\leq t$ parties are *byzantine* (other $\geq n - t$ are *honest*)

Agreement: Honests output same y Validity: y is meaningful

Q: What does *meaningful* **mean?**

 $x_i \in X$

 $x_i \in X$ (general purpose)

$x_i \in X$ (general purpose)

 Strong Validity: If all honests have the same input x, then the output is y = x (otherwise no constraints).

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input x, ' then the output is y = x (otherwise no constraints).
- Honest-Input Validity: y is the input of an honest party.

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input x, ' then the output is y = x (otherwise no constraints).
- Honest-Input Validity: y is the input of an honest party.

$x_i \in \mathbb{R}$

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input x, then the output is y = x (otherwise no constraints).
- Honest-Input Validity: y is the input of an honest party.

$x_i \in \mathbb{R}$ (temperature, altitude, price)

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input x, then the output is y = x (otherwise no constraints).
- Honest-Input Validity: y is the input of an honest party.

$x_i \in \mathbb{R}$ (temperature, altitude, price)

 Honest-Range Validity: y is between the smallest and largest honest inputs.

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input x, then the output is y = x (otherwise no constraints).
- Honest-Input Validity: y is the input of an honest party.

$x_i \in \mathbb{R}$ (temperature, altitude, price)

 Honest-Range Validity: y is between the smallest and largest honest inputs.

 $x_i \in \mathbb{R}^D$

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input x, then the output is y = x (otherwise no constraints).
- Honest-Input Validity: y is the input of an honest party.

$x_i \in \mathbb{R}$ (temperature, altitude, price)

 Honest-Range Validity: y is between the smallest and largest honest inputs.

$x_i \in \mathbb{R}^D$ (meeting point on a map)

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input x, then the output is y = x (otherwise no constraints).
- Honest-Input Validity: y is the input of an honest party.

$x_i \in \mathbb{R}$ (temperature, altitude, price)

 Honest-Range Validity: y is between the smallest and largest honest inputs.

$x_i \in \mathbb{R}^D$ (meeting point on a map)

Convex Validity: y is in the convex hull of honest inputs.

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input x, then the output is y = x (otherwise no constraints).
- Honest-Input Validity: y is the input of an honest party.

$x_i \in \mathbb{R}$ (temperature, altitude, price)

 Honest-Range Validity: y is between the smallest and largest honest inputs.

$x_i \in \mathbb{R}^D$ (meeting point on a map)

Convex Validity: y is in the convex hull of honest inputs.

Q: Is there more to convexity?

river

Q: Is there more to convexity? YES!

river

Q: Is there more to convexity? YES! Graphs

river

Q: Is there more to convexity? YES! Graphs, lattices

river

Q: Is there more to convexity? YES! Graphs, lattices, etc.

A convexity space C on a ground set X

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

• Ø and X are convex.

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

- Ø and X are convex.
- Intersections of convex sets are convex.

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The convex hull of $S \subseteq X$ is the intersection of all convex sets containing S.

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The convex hull of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The convex hull of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The convex hull of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

Examples:

• \mathbb{R}^{D} with straight-line convexity

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The convex hull of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

- \mathbb{R}^{D} with straight-line convexity
- Vertices of a graph G with monophonic/geodesic convexity

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The convex hull of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output y is in the convex hull of honest inputs.

- \mathbb{R}^{D} with straight-line convexity
- Vertices of a graph G with monophonic/geodesic convexity
- Elements of a lattice L with algebraic convexity

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The convex hull of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

- \mathbb{R}^{D} with straight-line convexity
- Vertices of a graph G with monophonic/geodesic convexity
- Elements of a lattice L with algebraic convexity
- Any set X and all sets are convex

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The convex hull of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

- \mathbb{R}^{D} with straight-line convexity
- Vertices of a graph G with monophonic/geodesic convexity
- Elements of a lattice L with algebraic convexity
- Any set X and all sets are convex → Honest-Input Validity

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The convex hull of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output y is in the convex hull of honest inputs.

- \mathbb{R}^{D} with straight-line convexity
- Vertices of a graph G with monophonic/geodesic convexity
- Elements of a lattice L with algebraic convexity
- Any set X and all sets are convex → Honest-Input Validity
- Any set X and Ø, X and singletons are convex

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The convex hull of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output y is in the convex hull of honest inputs.

- \mathbb{R}^{D} with straight-line convexity
- Vertices of a graph G with monophonic/geodesic convexity
- Elements of a lattice L with algebraic convexity
- Any set X and all sets are convex \rightarrow Honest-Input Validity
- Any set X and \emptyset , X and singletons are convex \rightarrow Strong Validity

A *convexity space C* on a ground set *X* specifies which subsets of *X* are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The convex hull of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

- \mathbb{R}^D with straight-line convexity \rightarrow Honest-Range Validity (D = 1)
- Vertices of a graph G with monophonic/geodesic convexity
- Elements of a lattice L with algebraic convexity
- Any set X and all sets are convex → Honest-Input Validity
- Any set X and \emptyset , X and singletons are convex \rightarrow Strong Validity

Q: Given *C*,

Q: Given C, find largest t s.t. we can achieve Agreement and Convex Validity for $\leq t$ corruptions?

Q: Given C, find largest t s.t. we can achieve Agreement and Convex Validity for $\leq t$ corruptions? Convex Consensus (CC)

Q: Given C, find largest t s.t. we can achieve Agreement and Convex Validity for $\leq t$ corruptions? Convex Consensus (CC)

Pb.: How can we even specify t?

A geometric invariant

The Helly number

Ζ.

Helly's Theorem:

Helly's Theorem:

Given family of convex sets in \mathbb{R}^{D} (with straight-line convexity):

Helly's Theorem:

Given family of convex sets in \mathbb{R}^{D} (with straight-line convexity): Every D + 1 intersect \Rightarrow all of them intersect.

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity): Every D + 1 intersect \Rightarrow all of them intersect.

Helly's Theorem:

Given family of convex sets in \mathbb{R}^{D} (with straight-line convexity): Every D + 1 intersect \Rightarrow all of them intersect.

Example:

100 disks in \mathbb{R}^2

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity): Every D + 1 intersect \Rightarrow all of them intersect.

Example:

100 disks in \mathbb{R}^2 : every **3** intersect

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity): Every D + 1 intersect \Rightarrow all of them intersect.

Example:

100 disks in \mathbb{R}^2 : every **3** intersect \Rightarrow **all** 100 intersect.

Helly's Theorem:

Given family of convex sets in \mathbb{R}^{D} (with straight-line convexity): Every D + 1 intersect \Rightarrow all of them intersect.

Example:

100 disks in \mathbb{R}^2 : every **3** intersect \Rightarrow **all** 100 intersect. (every **2** intersect \Rightarrow **all** 100 intersect)

Helly's Theorem:

Given family of convex sets in \mathbb{R}^{D} (with straight-line convexity): Every D + 1 intersect \Rightarrow all of them intersect.

Example: 100 disks in \mathbb{R}^2 : every **3** intersect \Rightarrow **all** 100 intersect. (every **2** intersect \Rightarrow **all** 100 intersect)

Helly's Theorem:

Given family of convex sets in \mathbb{R}^{D} (with straight-line convexity): Every D + 1 intersect \Rightarrow all of them intersect.

Example: 100 disks in \mathbb{R}^2 : every **3** intersect \Rightarrow **all** 100 intersect. (every **2** intersect \Rightarrow **all** 100 intersect)

Helly's Theorem (abstract):

Helly's Theorem:

Given family of convex sets in \mathbb{R}^{D} (with straight-line convexity): Every D + 1 intersect \Rightarrow all of them intersect.

Example:

100 disks in \mathbb{R}^2 : every **3** intersect \Rightarrow **all** 100 intersect. (every **2** intersect \Rightarrow **all** 100 intersect)

Helly's Theorem (abstract):

Given family of convex sets in a *convexity space C*: Every ω intersect \Rightarrow **all** of them intersect.

Helly's Theorem:

Given family of convex sets in \mathbb{R}^{D} (with straight-line convexity): Every D + 1 intersect \Rightarrow all of them intersect.

Example:

100 disks in \mathbb{R}^2 : every **3** intersect \Rightarrow **all** 100 intersect. (every **2** intersect \Rightarrow **all** 100 intersect)

Helly's Theorem (abstract):

Given family of convex sets in a *convexity space C*: Every ω intersect \Rightarrow **all** of them intersect.

Helly number of *C*
Q: Given C, find largest t s.t. we can achieve Agreement and Convex Validity for $\leq t$ corruptions? Convex Consensus (CC)

Pb.: How can we even specify t?

Q: Given C, find largest t s.t. we can achieve Agreement and Convex Validity for $\leq t$ corruptions? Convex Consensus (CC)

Pb.: How can we even specify t? ω

Q: Given C, find largest t s.t. we can achieve Agreement and Convex Validity for $\leq t$ corruptions? Convex Consensus (CC)

A: depends on *network model*.

Pb.: How can we even specify t? ω

(A)synchrony

3

And the best-of-both-worlds

Synchronous model: messages get delivered within a *known* amount of time Δ .

Synchronous model: messages get delivered within a *known* amount of time Δ .

Problem: small deviations from Δ break the protocol.

Synchronous model: messages get delivered within a *known* amount of time Δ . **Problem:** small deviations from Δ break the protocol.

Asynchronous model: messages get delivered eventually.

Synchronous model: messages get delivered within a *known* amount of time Δ . **Problem:** small deviations from Δ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower *t*.

Synchronous model: messages get delivered within a *known* amount of time Δ . **Problem:** small deviations from Δ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower *t*.

A tradeoff? Can we somehow get the best of both worlds?

Synchronous model: messages get delivered within a *known* amount of time Δ . **Problem:** small deviations from Δ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower *t*.

A tradeoff? Can we somehow get the best of both worlds?

Network-agnostic model:

Synchronous model: messages get delivered within a *known* amount of time Δ . **Problem:** small deviations from Δ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower *t*.

A tradeoff? Can we somehow get the best of both worlds?

Synchronous model: messages get delivered within a *known* amount of time Δ . **Problem:** small deviations from Δ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower *t*.

A tradeoff? Can we somehow get the best of both worlds?

Network-agnostic model: Given $t_a \leq t_s$:

Tolerate t_s corruptions if the network is synchronous.

Synchronous model: messages get delivered within a *known* amount of time Δ . **Problem:** small deviations from Δ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower *t*.

A tradeoff? Can we somehow get the best of both worlds?

- Tolerate *t_s* corruptions if the network is synchronous.
- Tolerate t_a corruptions if the network is asynchronous.

Synchronous model: messages get delivered within a *known* amount of time Δ . **Problem:** small deviations from Δ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower *t*.

A tradeoff? Can we somehow get the best of both worlds?

- Tolerate t_s corruptions if the network is synchronous.
- Tolerate t_a corruptions if the network is asynchronous.
- The protocol does not know which one is the case!

Synchronous model: messages get delivered within a *known* amount of time Δ . **Problem:** small deviations from Δ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower *t*.

A tradeoff? Can we somehow get the best of both worlds?

- Tolerate t_s corruptions if the network is synchronous.
- Tolerate *t_a* corruptions if the network is asynchronous.
- The protocol does not know which one is the case!
- (Question here: what pairs (t_s, t_a) are possible?)

Results

Tight results for all 3 models!

Synchronous model:

Synchronous model: $t < \frac{n}{\omega}$

Synchronous model: $t < \frac{n}{\omega}$ Asynchronous model:

Synchronous model: $t < \frac{n}{\omega}$ Asynchronous model: $t < \frac{n}{\omega+1}$

Synchronous model: $t < \frac{n}{\omega}$ Asynchronous model: $t < \frac{n}{\omega+1}$ Network-agnostic model:

Synchronous model: $t < \frac{n}{\omega}$ Asynchronous model: $t < \frac{n}{\omega+1}$ Network-agnostic model: $\omega t_s < n$

Synchronous model: $t < \frac{n}{\omega}$ Asynchronous model: $t < \frac{n}{\omega+1}$ Network-agnostic model: $\max(\omega t_s, \omega t_a + t_s) < n$

Synchronous model: $t < \frac{n}{\omega}$ Asynchronous model: $t < \frac{n}{\omega+1}$ Network-agnostic model: $\max(\omega t_s, \omega t_a + t_s, 2t_s + t_a) < n$

Synchronous model: $t < \frac{n}{\omega}$ Asynchronous model: $t < \frac{n}{\omega+1}$ Network-agnostic model: $\max(\omega t_s, \omega t_a + t_s, 2t_s + t_a) < n$

Synchronous model: $t < \frac{n}{r}$ Imp Pos Asynchronous model: $t < \frac{n}{\omega+1}$ Pos **Network-agnostic model:** $\max(\omega t_s, \omega t_a + t_s, 2t_s + t_a) < n$ Pos Imp1 Imp2 Imp3 100 $-n = \omega \cdot t_a + t_s$ $-n = 2 \cdot t_s + t_a$ Asynchronous threshold t_a 80 60 40200 2040 60 80 1000 Synchronous threshold t_s (b) $\omega = 3$

 $t = \frac{n}{\omega}$ is impossible

Example for \mathbb{R}^2 :

 $t = \frac{n}{\omega}$ is impossible

Example for \mathbb{R}^2 : $t = \frac{n}{3}$ is impossible.

Example for \mathbb{R}^2 : $t = \frac{n}{3}$ is impossible.

Example for \mathbb{R}^2 : $t = \frac{n}{3}$ is impossible.

Example for \mathbb{R}^2 : $t = \frac{n}{3}$ is impossible.

General convexity spaces C:

Example for \mathbb{R}^2 : $t = \frac{n}{3}$ is impossible.

General convexity spaces C: ω parties, 1 corrupted.

Example for \mathbb{R}^2 : $t = \frac{n}{3}$ is impossible.

General convexity spaces C:

- ω parties, 1 corrupted.
- Bad instance guaranteed by def. of ω .

Example for \mathbb{R}^2 : $t = \frac{n}{3}$ is impossible.

General convexity spaces C:

- ω parties, 1 corrupted.
- Bad instance guaranteed by def. of ω .
- Previously known: \mathbb{R}^{D} and convex geometries.

A) Parties distribute inputs to get a common view on (x_1, \dots, x_n) :

A) Parties distribute inputs to get a common view on (x_1, \dots, x_n) :

(some values *unknown*: $x_i = \bot$)

A) Parties distribute inputs to get a common view on (x_1, \dots, x_n) : (some values unknown: $x_i = \bot$)

1. Known honest values are correct;

A) Parties distribute inputs to get a common view on (x_1, \dots, x_n) : (some values unknown: $x_i = \bot$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;

A) Parties *distribute* inputs to get a *common view* on (x_1, \dots, x_n) : (some values *unknown*: $x_i = \bot$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;
- 3. Synchronous network \Rightarrow all honest values known.

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$: (some values *unknown*: $x_i = \bot$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;
- 3. Synchronous network \Rightarrow all honest values known.

"Core-Set Agreement" for $2 t_s + t_a < n$

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$: (some values *unknown*: $x_i = \bot$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;
- 3. Synchronous network \Rightarrow all honest values known.

"Core-Set Agreement" for $2 t_s + t_a < n$ (main tech. novelty)

A) Parties *distribute* inputs to get a *common view* on (x_1, \dots, x_n) : (some values *unknown*: $x_i = \bot$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;
- 3. Synchronous network \Rightarrow all honest values known.

"Core-Set Agreement" for $2 t_s + t_a < n$ (main tech. novelty)

B) Parties *locally* and *deterministically* compute a valid output

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$: (some values *unknown*: $x_i = \bot$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;
- 3. Synchronous network \Rightarrow all honest values known.

"Core-Set Agreement" for 2 $t_s + t_a < n$ (main tech. novelty)

B) Parties *locally* and *deterministically* compute a **valid** output by taking the "safe area"

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$: (some values *unknown*: $x_i = \bot$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;
- 3. Synchronous network \Rightarrow all honest values known.

"Core-Set Agreement" for 2 $t_s + t_a < n$ (main tech. novelty)

B) Parties *locally* and *deterministically* compute a **valid** output by taking the "*safe area*" (**Agreement** is for free).

e.g., 4 values in the common view, ≤ 1 corrupted, what to do?

Generally: a values in the common view, $\leq b$ corrupted

e.g., 4 values in the common view, ≤ 1 corrupted, what to do?

Generally: a values in the common view, $\leq b$ corrupted

Safe area: intersection of convex hulls of subsets of size a - b

e.g., 4 values in the common view, ≤ 1 corrupted, what to do?

Generally: a values in the common view, $\leq b$ corrupted

Safe area: intersection of convex hulls of subsets of size a - b*Any* point in safe area is valid, select one *deterministically*.

Safe Area (cont'd)
Who are *a* and **b**?

Who are *a* and **b**?

The common view has $\geq n - t_s$ values,

Who are *a* and **b**?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

Who are *a* and **b**?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

Who are a and b?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

Who are *a* and **b**?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

Who are *a* and **b**?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

Who are *a* and **b**?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

Who are *a* and **b**?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

 $\Rightarrow \mathbf{b} = \max(k, t_a)$

Who are *a* and **b**?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

 \Rightarrow **b** = max(k, t_a)

Q: Why is the safe area non-empty?

Who are *a* and **b**?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

 \Rightarrow **b** = max(k, t_a)

Q: Why is the safe area non-empty?

A: We intersect many convex sets,

Who are *a* and **b**?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

 \Rightarrow **b** = max(k, t_a)

Q: Why is the safe area non-empty?

A: We intersect many convex sets, but it suffices to show any ω intersect;

Who are *a* and **b**?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

 \Rightarrow **b** = max(k, t_a)

Q: Why is the safe area non-empty?

A: We intersect **many** *convex sets*, but it suffices to show any ω intersect; Pigeonhole Principle;

Who are *a* and **b**?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

 $\Rightarrow \mathbf{b} = \max(k, t_a)$

Q: Why is the safe area non-empty?

A: We intersect many *convex sets*, but it suffices to show any ω intersect; Pigeonhole Principle; $\max(\omega t_s, \omega t_a + t_s) < n$

Outlook

5.

And shameless self-advertising

.

Approximate Agreement?

Approximate Agreement?

Other adversaries?

Hope you enjoyed!

Hope you enjoyed!

No.

Bordón