Convex Consensus with Asynchronous Fallback

Andrei Constantinescu Diana Ghinea Roger Wattenhofer Floris Westermann

Distributed **Co**mputing Group**ETH**zürich

Why Convex Consensus?

(Almost) everything is convex if you believe!

1.

 n parties

 n parties

 n parties

n parties with inputs $x_1, ..., x_n$

n parties with inputs $x_1, ..., x_n$ giving outputs $y_1, ..., y_n$

n parties with inputs $x_1, ..., x_n$ giving outputs $y_1, ..., y_n$

Unknown $\leq t$ parties are *byzantine*

n parties with inputs $x_1, ..., x_n$ giving outputs $y_1, ..., y_n$

Unknown $\leq t$ parties are *byzantine*

n parties with inputs $x_1, ..., x_n$ giving outputs $y_1, ..., y_n$

Unknown ≤ t parties are *byzantine* (other $\geq n - t$ are *honest*)

n parties with inputs $x_1, ..., x_n$ giving outputs $y_1, ..., y_n$

Unknown ≤ t parties are *byzantine* (other $\geq n - t$ are *honest*)

Agreement: Honests output *same* **y**

n parties with inputs $x_1, ..., x_n$ giving outputs $y_1, ..., y_n$

Unknown ≤ t parties are *byzantine* (other $\geq n - t$ are *honest*)

Agreement: Honests output *same* **y**

n parties with inputs $x_1, ..., x_n$ giving outputs $y_1, ..., y_n$

Unknown ≤ t parties are *byzantine* (other $\geq n - t$ are *honest*)

Agreement: Honests output *same* **y Validity: y** is *meaningful*

n parties with inputs $x_1, ..., x_n$ giving outputs $y_1, ..., y_n$

Unknown ≤ t parties are *byzantine* (other $\geq n - t$ are *honest*)

Agreement: Honests output *same* **y Validity: y** is *meaningful*

Q: What does *meaningful* **mean?**

 $x_i \in X$

 $x_i \in X$ (general purpose)

$x_i \in X$ (general purpose)

• Strong Validity: If all honests have the same input **x**, then the output is $y = x$ (otherwise no constraints).

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input **x**, then the output is $y = x$ (otherwise no constraints).
- Honest-Input Validity: **y** is the input of an honest party.

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input **x**, then the output is $y = x$ (otherwise no constraints).
- Honest-Input Validity: **y** is the input of an honest party.

$x_i \in \mathbb{R}$

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input **x**, then the output is $y = x$ (otherwise no constraints).
- Honest-Input Validity: **y** is the input of an honest party.

 $x_i \in \mathbb{R}$ (temperature, altitude, price)

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input **x**, then the output is $y = x$ (otherwise no constraints).
- Honest-Input Validity: **y** is the input of an honest party.

$x_i \in \mathbb{R}$ (temperature, altitude, price)

• Honest-Range Validity: **y** is between the smallest and largest honest inputs.

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input **x**, then the output is $y = x$ (otherwise no constraints).
- Honest-Input Validity: **y** is the input of an honest party.

$x_i \in \mathbb{R}$ (temperature, altitude, price)

• Honest-Range Validity: **y** is between the smallest and largest honest inputs.

 $x_i \in \mathbb{R}^D$

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input **x**, then the output is $y = x$ (otherwise no constraints).
- Honest-Input Validity: **y** is the input of an honest party.

$x_i \in \mathbb{R}$ (temperature, altitude, price)

• Honest-Range Validity: **y** is between the smallest and largest honest inputs.

$x_i \in \mathbb{R}^D$ (meeting point on a map)

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input **x**, then the output is $y = x$ (otherwise no constraints).
- Honest-Input Validity: **y** is the input of an honest party.

$x_i \in \mathbb{R}$ (temperature, altitude, price)

• Honest-Range Validity: **y** is between the smallest and largest honest inputs.

$x_i \in \mathbb{R}^D$ (meeting point on a map)

• Convex Validity: **y** is in the convex hull of honest inputs.

$x_i \in X$ (general purpose)

- Strong Validity: If all honests have the same input **x**, then the output is $y = x$ (otherwise no constraints).
- Honest-Input Validity: **y** is the input of an honest party.

$x_i \in \mathbb{R}$ (temperature, altitude, price)

• Honest-Range Validity: **y** is between the smallest and largest honest inputs.

$x_i \in \mathbb{R}^D$ (meeting point on a map)

• Convex Validity: **y** is in the convex hull of honest inputs.

Q: Is there more to convexity?

river

Q: Is there more to convexity? YES!

river

Q: Is there more to convexity? YES! Graphs

river

Q: Is there more to convexity? YES! Graphs, lattices

river

Q: Is there more to convexity? YES! Graphs, lattices, etc.

A *convexity space C* on a ground set X

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

 \emptyset and X are convex.

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The *convex hull* of $S \subseteq X$ is the intersection of all convex sets containing S.

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The *convex hull* of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The *convex hull* of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The *convex hull* of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

Examples:

• \mathbb{R}^D with straight-line convexity

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The *convex hull* of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

- \mathbb{R}^D with straight-line convexity
- Vertices of a graph G with monophonic/geodesic convexity

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The *convex hull* of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

- \mathbb{R}^D with straight-line convexity
- Vertices of a graph G with monophonic/geodesic convexity
- Elements of a lattice L with algebraic convexity

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The *convex hull* of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

- \mathbb{R}^D with straight-line convexity
- Vertices of a graph G with monophonic/geodesic convexity
- Elements of a lattice L with algebraic convexity
- Any set X and all sets are convex

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The *convex hull* of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

- \mathbb{R}^D with straight-line convexity
- Vertices of a graph G with monophonic/geodesic convexity
- Elements of a lattice L with algebraic convexity
- Any set X and all sets are convex \rightarrow Honest-Input Validity

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The *convex hull* of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

- \mathbb{R}^D with straight-line convexity
- Vertices of a graph G with monophonic/geodesic convexity
- Elements of a lattice L with algebraic convexity
- Any set X and all sets are convex \rightarrow Honest-Input Validity
- Any set X and \emptyset , X and singletons are convex

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The *convex hull* of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

- \mathbb{R}^D with straight-line convexity
- Vertices of a graph G with monophonic/geodesic convexity
- Elements of a lattice L with algebraic convexity
- Any set X and all sets are convex \rightarrow Honest-Input Validity
- Any set X and Ø, X and singletons are convex \rightarrow Strong Validity

A *convexity space C* on a ground set X specifies which subsets of X are convex s.t.:

- \emptyset and X are convex.
- Intersections of convex sets are convex.

The *convex hull* of $S \subseteq X$ is the intersection of all convex sets containing S.

Convex Validity: output **y** is in the convex hull of honest inputs.

- \mathbb{R}^D with straight-line convexity \rightarrow Honest-Range Validity ($D = 1$)
- Vertices of a graph G with monophonic/geodesic convexity
- Elements of a lattice L with algebraic convexity
- Any set X and all sets are convex \rightarrow Honest-Input Validity
- Any set X and Ø, X and singletons are convex \rightarrow Strong Validity

Q: Given C ,

achieve Agreement and Convex Validity

Q: Given C , find largest t s.t. we can achieve Agreement and Convex Validity for $\leq t$ corruptions?

Q: Given C , find largest t s.t. we can achieve Agreement and Convex Validity for $\leq t$ corruptions? Convex Consensus (CC)

Q: Given C , find largest t s.t. we can achieve Agreement and Convex Validity for $\leq t$ corruptions? Convex Consensus (CC)

Pb.: How can we even specify t?

A geometric invariant

The Helly number

2.

Helly's Theorem:

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity):

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity): Every $\mathbf{D} + \mathbf{1}$ intersect \Rightarrow **all** of them intersect.

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity): Every $\mathbf{D} + \mathbf{1}$ intersect \Rightarrow all of them intersect.

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity): Every $\mathbf{D} + \mathbf{1}$ intersect \Rightarrow all of them intersect.

Example:

100 disks in \mathbb{R}^2

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity): Every $\mathbf{D} + \mathbf{1}$ intersect \Rightarrow all of them intersect.

Example:

100 disks in \mathbb{R}^2 : every 3 intersect

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity): Every $\mathbf{D} + \mathbf{1}$ intersect \Rightarrow all of them intersect.

Example:

100 disks in ℝ² : every **3** intersect ⇒ **all** 100 intersect.

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity): Every $\mathbf{D} + \mathbf{1}$ intersect \Rightarrow all of them intersect.

Example:

100 disks in ℝ² : every **3** intersect ⇒ **all** 100 intersect. (every **2** intersect ⇒ **all** 100 intersect)

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity): Every $\mathbf{D} + \mathbf{1}$ intersect \Rightarrow all of them intersect.

Example: 100 disks in ℝ² : every **3** intersect ⇒ **all** 100 intersect. (every **2** intersect ⇒ **all** 100 intersect)

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity): Every $\mathbf{D} + \mathbf{1}$ intersect \Rightarrow all of them intersect.

Example: 100 disks in ℝ² : every **3** intersect ⇒ **all** 100 intersect. (every **2** intersect ⇒ **all** 100 intersect)

Helly's Theorem (abstract):

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity): Every $\mathbf{D} + \mathbf{1}$ intersect \Rightarrow all of them intersect.

Example:

100 disks in ℝ² : every **3** intersect ⇒ **all** 100 intersect. (every **2** intersect ⇒ **all** 100 intersect)

Helly's Theorem (abstract):

Given family of convex sets in a *convexity space C*: Every ω intersect \Rightarrow all of them intersect.

Helly's Theorem:

Given family of convex sets in \mathbb{R}^D (with straight-line convexity): Every $\mathbf{D} + \mathbf{1}$ intersect \Rightarrow all of them intersect.

Example:

100 disks in ℝ² : every **3** intersect ⇒ **all** 100 intersect. (every **2** intersect ⇒ **all** 100 intersect)

Helly's Theorem (abstract):

Given family of convex sets in a *convexity space C*: Every ω intersect \Rightarrow all of them intersect.

Helly number of C
Q: Given C , find largest t s.t. we can achieve Agreement and Convex Validity for $\leq t$ corruptions? Convex Consensus (CC)

Pb.: How can we even specify t?

Q: Given C , find largest t s.t. we can achieve Agreement and Convex Validity for $\leq t$ corruptions? Convex Consensus (CC)

Pb.: How can we even specify t? ω

Q: Given C , find largest t s.t. we can achieve Agreement and Convex Validity for $\leq t$ corruptions? Convex Consensus (CC)

A: depends on *network model*.

Pb.: How can we even specify t? ω

(A)synchrony

3

And the best-of-both-worlds

Synchronous model: messages get delivered within a *known* amount of time Δ.

Synchronous model: messages get delivered within a *known* amount of time Δ.

Problem: small deviations from ∆ break the protocol.

Synchronous model: messages get delivered within a *known* amount of time Δ. **Problem:** small deviations from ∆ break the protocol.

Asynchronous model: messages get delivered *eventually*.

Synchronous model: messages get delivered within a *known* amount of time Δ. **Problem:** small deviations from ∆ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower t.

Synchronous model: messages get delivered within a *known* amount of time Δ. **Problem:** small deviations from ∆ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower t.

A tradeoff? Can we somehow get the best of both worlds?

Synchronous model: messages get delivered within a *known* amount of time Δ. **Problem:** small deviations from ∆ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower t.

A tradeoff? Can we somehow get the best of both worlds?

Network-agnostic model:

Synchronous model: messages get delivered within a *known* amount of time Δ. **Problem:** small deviations from ∆ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower t.

A tradeoff? Can we somehow get the best of both worlds?

Synchronous model: messages get delivered within a *known* amount of time Δ. **Problem:** small deviations from ∆ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower t.

A tradeoff? Can we somehow get the best of both worlds?

Network-agnostic model: Given $t_a \leq t_s$:

Tolerate t_s corruptions if the network is synchronous.

Synchronous model: messages get delivered within a *known* amount of time Δ. **Problem:** small deviations from ∆ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower t.

A tradeoff? Can we somehow get the best of both worlds?

- Tolerate t_s corruptions if the network is synchronous.
- Tolerate t_a corruptions if the network is asynchronous.

Synchronous model: messages get delivered within a *known* amount of time Δ. **Problem:** small deviations from ∆ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower t.

A tradeoff? Can we somehow get the best of both worlds?

- Tolerate t_s corruptions if the network is synchronous.
- Tolerate t_a corruptions if the network is asynchronous.
- **The protocol does not know which one is the case!**

Synchronous model: messages get delivered within a *known* amount of time Δ. **Problem:** small deviations from ∆ break the protocol.

Asynchronous model: messages get delivered *eventually*. **Problem:** requires lower t.

A tradeoff? Can we somehow get the best of both worlds?

- Tolerate t_s corruptions if the network is synchronous.
- Tolerate t_a corruptions if the network is asynchronous.
- **The protocol does not know which one is the case!**
- (**Question here:** what pairs (t_s, t_a) are possible?)

Results

4.

Tight results for all 3 models!

Synchronous model:

Synchronous model: $t < \frac{n}{\omega}$

Synchronous model: $t < \frac{n}{\omega}$ **Asynchronous model:**

Synchronous model: $t < \frac{n}{\omega}$ Asynchronous model: $t < \frac{m}{\omega+1}$

Synchronous model: $t < \frac{n}{\sqrt{n}}$ ω Asynchronous model: $t < \frac{\infty}{\sqrt{n}}$ $\omega+1$ **Network-agnostic model:**

Synchronous model: $t < \frac{n}{\omega}$ Asynchronous model: $t < \frac{m}{\omega+1}$ Network-agnostic model: $\omega t_s < n$

Synchronous model: $t < \frac{n}{\omega}$ Asynchronous model: $t < \frac{m}{\omega+1}$ Network-agnostic model: $\max(\omega t_s, \omega t_a + t_s) < n$

Synchronous model: $t < \frac{n}{\omega}$ Asynchronous model: $t < \frac{w}{\omega+1}$ Network-agnostic model: $\max(\omega t_s, \omega t_a + t_s, 2t_s + t_a) < n$

Synchronous model: $t < \frac{n}{\omega}$ Asynchronous model: $t < \frac{n}{\omega+1}$ Network-agnostic model: $\max(\omega t_s, \omega t_a + t_s, 2t_s + t_a) < n$

Synchronous model: $t < \frac{n}{t}$ Imp **Pos** ω Asynchronous model: $t < \frac{n}{\omega+1}$ **Pos** Network-agnostic model: $\max(\omega t_s, \omega t_a + t_s, 2t_s + t_a) < n$ **Pos** $Imp1$ Imp₂ $Imp3$ 100 $-n = \omega \cdot t_a + t_s$
 $-n = 2 \cdot t_s + t_a$ Asynchronous threshold t_a 80 60 40 20 $\overline{0}$ 20 40 60 80 100 θ Synchronous threshold t_s (b) $\omega = 3$

$t=$ \overline{n} ω **is impossible**

 $t=$ \overline{n} ω **is impossible**

Example for \mathbb{R}^2 :

$t=$ \overline{n} ω **is impossible**

$t=$ \overline{n} ω **is impossible**

 $t=$ \overline{n} ω **is impossible**

$t=$ \overline{n} ω **is impossible**

 $t=$ \overline{n} ω **is impossible**

$t=$ \boldsymbol{n} ω **is impossible**

Example for \mathbb{R}^2 **:** $t=$ \boldsymbol{n} 3 **is impossible.**

$t=$ \boldsymbol{n} ω **is impossible**

Example for \mathbb{R}^2 **:** $t=$ \boldsymbol{n} 3 **is impossible.**

Example for \mathbb{R}^2 **:** $t=$ \boldsymbol{n} 3 **is impossible.**

Example for \mathbb{R}^2 **:** $t=$ \boldsymbol{n} 3 **is impossible.**

General *convexity spaces* **:**

Example for \mathbb{R}^2 **:** $t=$ \boldsymbol{n} 3 **is impossible.**

General *convexity spaces* **:** ω parties, 1 corrupted.

Example for \mathbb{R}^2 **:** $t=$ \boldsymbol{n} 3 **is impossible.**

General *convexity spaces* **:**

- ω parties, 1 corrupted.
- *Bad* instance guaranteed by def. of ω .

Example for \mathbb{R}^2 **:** $t=$ \boldsymbol{n} 3 **is impossible.**

General *convexity spaces* **:**

- ω parties, 1 corrupted.
- *Bad* instance guaranteed by def. of ω .
- Previously known: \mathbb{R}^D and *convex geometries*.

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$:

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$:

(some values *unknown*: $x_i = \perp$)

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$: $(some$ values *unknown*: $x_i = \perp$)

1. Known honest values are correct;

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$: $(some$ values *unknown*: $x_i = \perp$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$: $(some$ values *unknown*: $x_i = \perp$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;
- 3. Synchronous network \Rightarrow all honest values known.

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$: $(some$ values *unknown*: $x_i = \perp$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;
- 3. Synchronous network \Rightarrow all honest values known.

"Core-Set Agreement" for 2 $t_s + t_a < n$

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$: $(some$ values *unknown*: $x_i = \perp$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;
- 3. Synchronous network \Rightarrow all honest values known.

"Core-Set Agreement" for $2 t_s + t_a < n$ (main tech. novelty)

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$: $(some$ values *unknown*: $x_i = \perp$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;
- 3. Synchronous network \Rightarrow all honest values known.

"Core-Set Agreement" for $2 t_s + t_a < n$ (main tech. novelty)

B) Parties *locally* and *deterministically* compute a **valid** output

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$: $(some$ values *unknown*: $x_i = \perp$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;
- 3. Synchronous network \Rightarrow all honest values known.

"Core-Set Agreement" for $2 t_s + t_a < n$ (main tech. novelty)

B) Parties *locally* and *deterministically* compute a **valid** output by taking the "*safe area"*

A) Parties *distribute* inputs to get a *common view* on $(x_1, ..., x_n)$: $(some$ values *unknown*: $x_i = \perp$)

- 1. Known honest values are correct;
- 2. $\geq n t_s$ values known;
- 3. Synchronous network \Rightarrow all honest values known.

"Core-Set Agreement" for $2 t_s + t_a < n$ (main tech. novelty)

B) Parties *locally* and *deterministically* compute a **valid** output by taking the "*safe area"* (**Agreement** is for free).

e.g., 4 values in the common view, ≤ 1 corrupted, what to do?

Generally: α values in the common view, \leq b corrupted

e.g., 4 values in the common view, ≤ 1 corrupted, what to do?

Generally: α values in the common view, \leq b corrupted

Safe area: intersection of convex hulls of subsets of size $a - b$

e.g., 4 values in the common view, ≤ 1 corrupted, what to do?

Generally: α values in the common view, \leq b corrupted

Safe area: intersection of convex hulls of subsets of size $a - b$ *Any* point in safe area is valid, select one *deterministically*.

Safe Area (cont'd)
Who are a and b ?

Who are a and b ?

The common view has $\geq n - t_s$ values,

Who are a and b ?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

Who are a and b ?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

Who are a and b ?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

Who are a and b ?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

Who are a and b ?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

Who are a and b ?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

Who are a and b ?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

 \Rightarrow **b** = max(k, t_a)

Who are a and b ?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

 \Rightarrow **b** = max(k, t_a)

Q: Why is the safe area non-empty?

Who are a and b ?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

 \Rightarrow **b** = max(k, t_a)

Q: Why is the safe area non-empty?

A: We intersect **many** *convex sets,*

Who are a and b ?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

 \Rightarrow **b** = max(k, t_a)

Q: Why is the safe area non-empty?

A: We intersect **many** *convex sets,* but it suffices to show any ω intersect;

Who are a and b ?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

 \Rightarrow **b** = max(k, t_a)

Q: Why is the safe area non-empty?

A: We intersect many *convex sets*, but it suffices to show any ω intersect; Pigeonhole Principle;

Who are a and b ?

The common view has $\geq n - t_s$ values, say $a = n - t_s + k$.

The network is synchronous?

 \Rightarrow at most k of these values are corrupted.

The network is asynchronous?

 \Rightarrow at most t_a of these values are corrupted.

We don't know which?

 \Rightarrow **b** = max(k, t_a)

Q: Why is the safe area non-empty?

A: We intersect **many** *convex sets,* but it suffices to show any ω intersect; Pigeonhole Principle; $\max(\omega t_{\scriptscriptstyle S},\omega t_a+t_{\scriptscriptstyle S}) < n$

Outlook

5.

And shameless self-advertising

7

Approximate Agreement?

Approximate Agreement?

Other adversaries?

Hope you enjoyed!

Hope you enjoyed!

 $\frac{1000}{1000}$ Boudón