Unravelling Expressive Delegations: Complexity and Normative Analysis

GIANNIS TYROVOLAS

ANDREI CONSTANTINESCU

EDITH ELKIND

Summary

- We consider a **rich model** of Liquid Democracy.
- We prove computational **hardness** for many problems in the rich model.
- We focus on the **simpler model** and prove normative and computational results.

Liquid democracy

Liquid democracy allows delegations to be transitive.

How to deal with cycles?

Solution: ranked delegations

Summary of Liquid Democracy

In this model of Liquid Democracy:

- 1. All voters can vote **directly** on issues.
- 2. Voters can delegate their votes to each other with **transitive delegations**.

Voters submit **a ranked preference order** of delegations. The **final preference** of each delegate must be for either YES or NO, to guarantee that cycles can be resolved.

Smart voting by Colley et al. adds more expressive delegations: voters can delegate to functions of other voters.

Expressive delegation

Converting ballots to votes

Given a ballot for the Smart Voting model, how can we convert it to votes for each agent?

Last preferences are always consistent

 $B_B = (\mathbf{Yes})$ $B_E = (\mathbf{No})$ $B_C = (G > E > \mathbf{Yes})$ $B_G = (\mathbf{Maj}(B, C, E) > \mathbf{Yes})$

Last preferences are always consistent

 $B_B = (\mathbf{Yes})$ $B_E = (\mathbf{No})$ $B_C = (G > E > \mathbf{Yes})$ $B_G = (\mathbf{Maj}(B, C, E) > \mathbf{Yes})$

Better consistent certificate

The problem

There are a lot of valid preference assignments. How can we pick the "best"?

Colley et al. introduce two notions of "**best**":

- MinMax: Minimise the maximum preference level used
- MinSum: Minimise the sum of preference levels used

Are there **efficient** algorithms to compute these?

It turns out that the complexity of the problem depends on what **functions** agents can delegate to.

Results in Colley et al.

LIQUID: Agents can only delegate to a single other agent

 $\vee:$ BinaryBoolean OR

 \wedge : Binary Boolean AND

Bool: all Boolean functions

	LIQUID	$LIQUID \cup \{\lor\} \text{ or} \\ LIQUID \cup \{\land\}$	$LIQUID \cup \{\wedge_{k=1}^n\}$	$LIQUID \cup \{\lor, \land\}$	$\begin{array}{c} \text{Monotone } f \notin \{ \vee^n, \wedge^n, id \} \\ LIQUID \cup \{ f \} \end{array}$	Bool
MinMax	EASY	?	?	?	?	EARD
MinSum	EASY	?	UARD	?	?	HARD

Our results

LIQUID: Agents can only delegate to a single other agent

 $\vee:$ BinaryBoolean OR

 \wedge : Binary Boolean AND

Bool: all Boolean functions

This is a **complete computational dichotomy** for monotone functions

	LIQUID	$LIQUID \cup \{\lor\} \text{ or} \\ LIQUID \cup \{\land\}$	$LIQUID \cup \{\wedge_{k=1}^n\}$	$LIQUID \cup \{\lor, \land\}$	Monotone $f \notin \{\vee^n, \wedge^n, id\}$ $LIQUID \cup \{f\}$	Bool
MinMax	EASY	EASY an	EASY	HARD	HARD	HARD
MinSum	EASY	HARD	HARD	HARD	INRD	HARD

Robustness of hardness

Our hardness results are **robust**.

When we identify hardness for a class of functions $\mathcal F$ then:

 $MinSum_{\mathcal{F}}$ is NP-hard even if agents are only allowed **one** non-constant delegation.

 $MinMax_{\mathcal{F}}$ is NP-hard even if agents are only allowed **two** non-constant delegations.

A constant factor **approximation** of either problem is NP-hard.

Focusing on the simpler model

Given this hardness, let's focus on the **simpler** model.

In the simple setting, we can **efficiently** compute a MinSum and a MinMax outcome.

However, there are **multiple** such outcomes. How should we pick one?

Example of tied outcome

Grace always votes for YES

Eileen always votes for NO

Bob and Charlie can vote in some outcomes for YES and in some outcomes for NO

Structure of MinSum outcomes

There exists a **MinSum** outcome c_{YES} such that if voter v votes for YES in a MinSum outcome they also vote for YES in c_{YES} .

Similarly, there exists a c_{NO} .

The same result holds for MinMax.

The outcomes c_{YES} and c_{NO} can be found in **polynomial time**.

	v_1	v_2	v_3	v_4	v_5
\mathbf{c}_{YES}	1	1	0	1	1
\mathbf{c}_1	1	0	0	1	1
\mathbf{c}_2	0	1	0	1	1
\mathbf{c}_3	1	0	0	1	0
\mathbf{c}_{NO}	0	0	0	1	0

Biased tie-breaking

So, we introduce new **resolute** rules for **MinMax** and **MinSum** that break ties in favour of a given alternative.

This tie-breaking can be used when there's a **default** option. For example, when voting to change the status quo.

Cast-monotonicity

We introduce a new axiom named **cast-monotonicity**.

It captures the intuition that if agents have a preference over **YES** or **NO**, then their best course of action is to always vote for their preferred outcome.

For irresolute rules we consider that agents who prefer **YES** over **NO** also prefer **{YES**} over **{YES**, **NO**} over **{NO**}.

MinMax does **not** satisfy cast monotonicity

The outcome using only first preferences would result to the majority voting for **NO**. So, the outcome set is {**NO**}.

But Grace is incentivised to introduce a cycle.

If Grace introduces a cycle by voting for Alice, **MinMax** will return all valid outcomes that use at most second preferences. It will also return the outcome where Bob votes for **YES**. Making the outcome set {**YES**, **NO**}.

Cast-monotonicity

So, **MinMax** does not satisfy *cast-monotonicity*.

MinSum and the resolute variants with biased tie-breaking satisfy cast-monotonicity.

Summary

We prove **a characterisation result** for the complexity of monotone functions for MinSum and MinMax.

We propose **resolute** and efficiently computable rules for **biased tie-breaking**.

We introduce *cast-monotonicity* and prove **MinSum** satisfies it, but **MinMax** does not.

References

Icons were taken from Flaticon

The model we consider was proposed by Colley et al. in:

Colley, Rachael, Umberto Grandi, and Arianna Novaro. "Unravelling multi-agent ranked delegations." *Autonomous Agents and Multi-Agent Systems* 36.1 (2022): 9.