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Desired group sizes:
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1 3

Partition hikers into subgroups such that everyone is satisfied with
their group size. Puzzle: Polynomial time?
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Hiking Problem

Input: n agents, for each agent i an interval [ℓi , ri ].
Output: Partition of agents s.t. ∀i the size of i ’s group is in [ℓi , ri ].
(i.e., Ai = {ℓi , . . . , ri})

Complexity : open [Woeginger’13] ⇒ Polynomial [this paper].

Generalization

Input: n agents, for each agent i a set Ai of ‘approved’ sizes.
Output: Partition of agents s.t. ∀i the size of i ’s group is in Ai .

Complexity :

▶ Polynomial if |Ai | = 1;

▶ NP-hard if |Ai | = 2 [this paper];

▶ NP-hard if |Ai | ≤ 2 [Darmann et al.’18];

▶ NP-hard if |Ai | ≤ 3 [Woeginger’13].
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red points ci at coordinate each x = i is divisible by i .

1 2 3 4 5 6

4 31 6



Reformulation

Select a red point on each of n intervals such that the number of
red points ci at coordinate each x = i is divisible by i .

1 2 3 4 5 6

4 31 6



Reformulation

Select a red point on each of n intervals such that the number of
red points ci at coordinate each x = i is divisible by i .

1 2 3 4 5 6

4 31 6



Reformulation

Select a red point on each of n intervals such that the number of
red points ci at coordinate each x = i is divisible by i .

1 2 3 4 5 6

4 31 6



Reformulation

Select a red point on each of n intervals such that the number of
red points ci at coordinate each x = i is divisible by i .

1 2 3 4 5 6

4 3

1 6



Reformulation

Select a red point on each of n intervals such that the number of
red points ci at coordinate each x = i is divisible by i .

1 2 3 4 5 6

4 3

1 6



Solving with red counts advice

Assume red counts are known — find out if a solution exists.

1 2 3 4 5 6

4 3

Select 4 out of 5. Which?

Lowest ‘active’ ri ’s!

(“Earliest-due-date” in
scheduling)
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But without advice?

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

1. Run the previous algorithm; at each stage, guess (in all
possible ways) the red count and use earliest-due-date;

2. = recursion with states (i ,A), where 1 ≤ i ≤ n and A is the
set of currently “active” intervals;

3. + memoization/dynamic programming (DP);

Problem: exponentially many states!
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Attempt 2

Build an earliest-due-date soln., but not “in the natural order.”

Idea [Even et al.’2008]:

1 2 3 4 5 6

?x

= {i | ℓi ≤ 3}
= {i | ℓi > 3}

Crucial:
≤ 3 <

Solve for ∈ [1, 3]
recursively.

(don’t
forget !)

Solve for ∈ [4, 6]
recursively.
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The Recursion

Assume r1 ≤ . . . ≤ rn.

Recursion with state (x1, x2, i , c): (memoization/DP)
▶ Consider only intervals j s.t.: (active set)

▶ ℓj ∈ [x1, x2] and
▶ j ≤ i . (roughly same as: rj ∈ [1, ri ])

▶ Select a point for each interval in [x1, x2] to satisfy the
divisibility constraints.

▶ Assuming c exogenous points already present at x2.

To implement: w.l.o.g. j = i is active. Try out all possibilities
∈ [ℓi , ri ] ∩ [x1, x2] for i ’s point, recurse left and right for each.

Time complexity: O(n5) (open: better?)
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Extensions

▶ Hiking-Min-Delete: Delete a minimum number of agents
to make the rest feasible.
▶ Same DP, but make it return the minimum number of deleted

agents instead of yes/no. Time complexity: O(n5)

▶ Hiking-X-Delete: Delete exactly x agents to make the
rest feasible.
▶ Add another variable to the DP. Time complexity: O(n7)

▶ Hiking-Max-Satisfied: Satisfy as many agents as
possible.
▶ Binary search for the number of unsatisfied agents k. Need to

find N ′ ⊆ N with |N ′| = k such that (N ∪ Dk) \ N ′ is feasible,
where Dk are k dummies. This is done with
Hiking-X-Delete.

▶ Time complexity: O(n7 log n);
▶ Binary search is not needed actually, so O(n7).

▶ weighted extensions . . .
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Given:

▶ n agents, each agent i with preferred group size si ;

▶ Global function f : R2 → R; e.g., f (x , y) = |x − y |;
▶ Agent i being in a group of size s incurs cost f (si , s).

Goal:

▶ Partition that minimizes the total/maximum cost of an agent.

Results: Under assumptions on f , we solve both versions in O(n2)
time. And can even find the best that can be achieved by
removing at most α agents in time O(n2(α+ 1)).
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