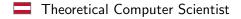
Solving Woeginger's Hiking Problem (Wonderful Partitions in Anonymous Hedonic Games)

Andrei Constantinescu, Pascal Lenzner, Rebecca Reiffenhäuser, Daniel Schmand, Giovanna Varricchio



Comb. opt.

Comb. opt., scheduling

Comb. opt., scheduling, graphs

Comb. opt., scheduling, graphs, complexity

Comb. opt., scheduling, graphs, complexity, game theory

Comb. opt., scheduling, graphs, complexity, game theory, ...

Comb. opt., scheduling, graphs, complexity, game theory, ...

 400^+ papers

Comb. opt., scheduling, graphs, complexity, game theory, ...

400⁺ papers: ESA (18), TCS (16), Algorithmica (13), SODA (10), ICALP (8), STACS (6), TALG (3), FOCS (2), STOC (2) ...

Comb. opt., scheduling, graphs, complexity, game theory, ...

400⁺ papers: ESA (18), TCS (16), Algorithmica (13), SODA (10), ICALP (8), STACS (6), TALG (3), FOCS (2), STOC (2) ...

Program chair: ICALP (2003)

Gerhard Woeginger (1964—2022) Theoretical Computer Scientist

Comb. opt., scheduling, graphs, complexity, game theory, ...

400⁺ papers: ESA (18), TCS (16), Algorithmica (13), SODA (10), ICALP (8), STACS (6), TALG (3), FOCS (2), STOC (2) ...

Program chair: **ICALP (2003)**, ESA (1997)

Gerhard Woeginger (1964—2022) Theoretical Computer Scientist

Comb. opt., scheduling, graphs, complexity, game theory, ...

400⁺ papers: ESA (18), TCS (16), Algorithmica (13), SODA (10), ICALP (8), STACS (6), TALG (3), FOCS (2), STOC (2) ...

Program chair: **ICALP (2003)**, ESA (1997)

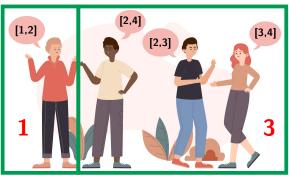
Liked Puzzles!

Desired group sizes:

Desired group sizes:

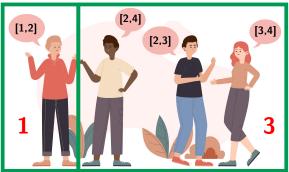
Partition hikers into subgroups such that everyone is satisfied with their group size.

Desired group sizes:



Partition hikers into subgroups such that everyone is satisfied with their group size.

Desired group sizes:



Partition hikers into subgroups such that everyone is satisfied with their group size. **Puzzle: Polynomial time?**

Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$.

Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in $[\ell_i, r_i]$.

Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in $[\ell_i, r_i]$.

Generalization

Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in $[\ell_i, r_i]$.

Generalization

Input: *n* agents, for each agent *i* a set A_i of 'approved' sizes.

Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in $[\ell_i, r_i]$.

Generalization

Input: *n* agents, for each agent *i* a set A_i of 'approved' sizes. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in A_i .

Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in $[\ell_i, r_i]$. (i.e., $A_i = \{\ell_i, \ldots, r_i\}$)

Generalization

Input: *n* agents, for each agent *i* a set A_i of 'approved' sizes. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in A_i .

Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in $[\ell_i, r_i]$. (i.e., $A_i = \{\ell_i, \ldots, r_i\}$)

Generalization

Input: *n* agents, for each agent *i* a set A_i of 'approved' sizes. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in A_i . *Complexity*:

Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in $[\ell_i, r_i]$. (i.e., $A_i = \{\ell_i, \ldots, r_i\}$)

Generalization

Input: *n* agents, for each agent *i* a set A_i of 'approved' sizes. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in A_i .

Complexity:

Polynomial if $|A_i| = 1$;

Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in $[\ell_i, r_i]$. (i.e., $A_i = \{\ell_i, \ldots, r_i\}$)

Generalization

Input: *n* agents, for each agent *i* a set A_i of 'approved' sizes. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in A_i .

Complexity:

• Polynomial if $|A_i| = 1$;

▶ NP-hard if $|A_i| \le 3$ [Woeginger'13].

Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in $[\ell_i, r_i]$. (i.e., $A_i = \{\ell_i, \ldots, r_i\}$)

Generalization

Input: *n* agents, for each agent *i* a set A_i of 'approved' sizes. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in A_i .

- Polynomial if $|A_i| = 1$;
- ▶ NP-hard if $|A_i| \le 2$ [Darmann et al.'18];
- ▶ NP-hard if $|A_i| \le 3$ [Woeginger'13].

Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in $[\ell_i, r_i]$. (i.e., $A_i = \{\ell_i, \ldots, r_i\}$)

Generalization

Input: *n* agents, for each agent *i* a set A_i of 'approved' sizes. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in A_i .

- Polynomial if $|A_i| = 1$;
- NP-hard if $|A_i| = 2$ [this paper];
- ▶ NP-hard if $|A_i| \le 2$ [Darmann et al.'18];
- ▶ NP-hard if $|A_i| \le 3$ [Woeginger'13].

Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in $[\ell_i, r_i]$. (i.e., $A_i = \{\ell_i, \ldots, r_i\}$)

Complexity:

Generalization

Input: *n* agents, for each agent *i* a set A_i of 'approved' sizes. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in A_i .

- Polynomial if $|A_i| = 1$;
- NP-hard if $|A_i| = 2$ [this paper];
- ▶ NP-hard if $|A_i| \le 2$ [Darmann et al.'18];
- ▶ NP-hard if $|A_i| \le 3$ [Woeginger'13].

Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in $[\ell_i, r_i]$. (i.e., $A_i = \{\ell_i, \dots, r_i\}$)

Complexity: open [Woeginger'13]

Generalization

Input: *n* agents, for each agent *i* a set A_i of 'approved' sizes. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in A_i .

- Polynomial if $|A_i| = 1$;
- NP-hard if $|A_i| = 2$ [this paper];
- ▶ NP-hard if $|A_i| \le 2$ [Darmann et al.'18];
- ▶ NP-hard if $|A_i| \le 3$ [Woeginger'13].

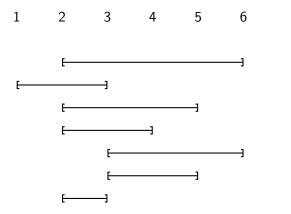
Input: *n* agents, for each agent *i* an interval $[\ell_i, r_i]$. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in $[\ell_i, r_i]$. (i.e., $A_i = \{\ell_i, \ldots, r_i\}$)

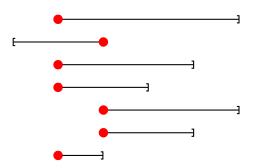
Complexity: **open** [Woeginger'13] \Rightarrow **Polynomial** [this paper].

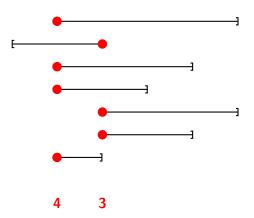
Generalization

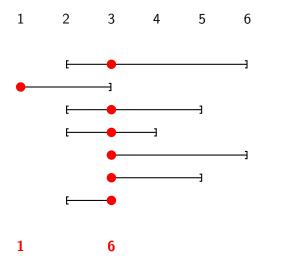
Input: *n* agents, for each agent *i* a set A_i of 'approved' sizes. **Output:** Partition of agents s.t. $\forall i$ the size of *i*'s group is in A_i .

- Polynomial if $|A_i| = 1$;
- NP-hard if $|A_i| = 2$ [this paper];
- ▶ NP-hard if $|A_i| \le 2$ [Darmann et al.'18];
- ▶ NP-hard if $|A_i| \le 3$ [Woeginger'13].

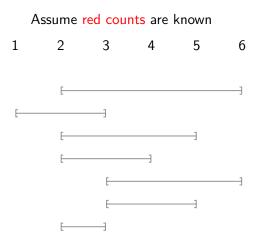


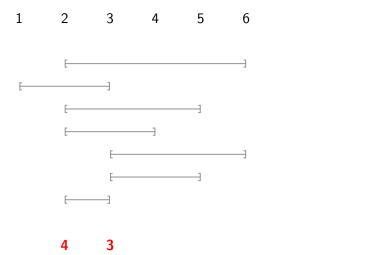


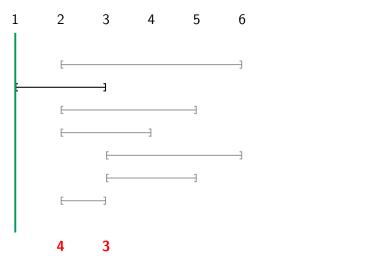


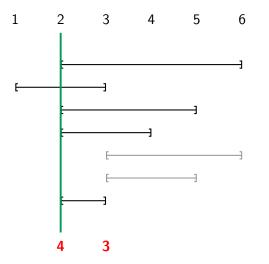


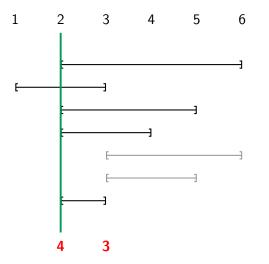
Assume red counts are known

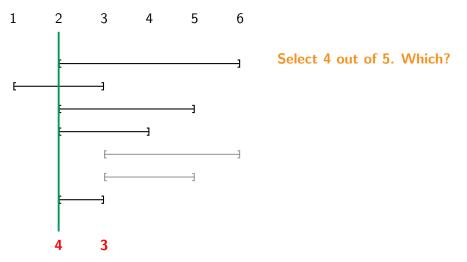


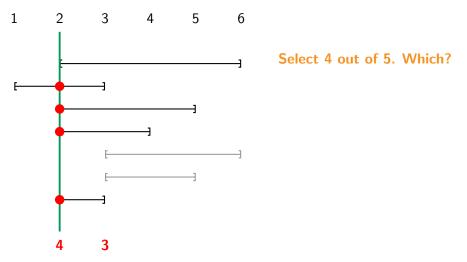


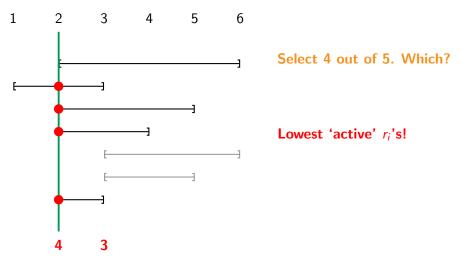


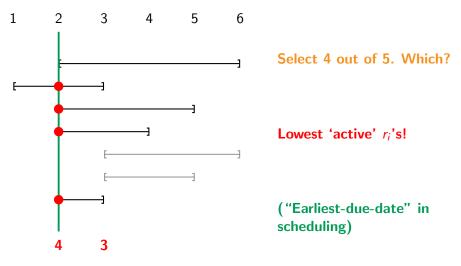




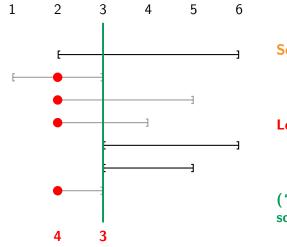








Assume red counts are known — find out if a solution exists.

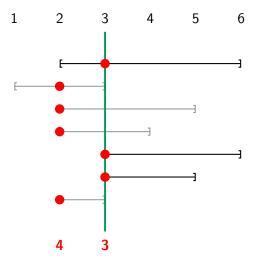


Select 4 out of 5. Which?

Lowest 'active' r_i's!

("Earliest-due-date" in scheduling)

Assume red counts are known — find out if a solution exists.

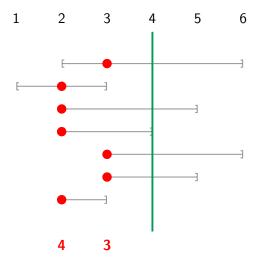


Select 4 out of 5. Which?

Lowest 'active' r_i's!

("Earliest-due-date" in scheduling)

Assume red counts are known — find out if a solution exists.



Select 4 out of 5. Which?

Lowest 'active' r_i's!

("Earliest-due-date" in scheduling)

Great, but needs red counts advice.

Great, but needs red counts advice.

Simulate red counts advice?

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

1. Run the previous algorithm;

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

1. Run the previous algorithm; at each stage, **guess** (in all possible ways) the red count

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

1. Run the previous algorithm; at each stage, **guess** (in all possible ways) the red count and use earliest-due-date;

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

- 1. Run the previous algorithm; at each stage, **guess** (in all possible ways) the red count and use earliest-due-date;
- 2. = recursion with states (i, A), where $1 \le i \le n$ and A is the set of currently "active" intervals;

Great, but needs red counts advice.

Simulate red counts advice?

Attempt 1

- 1. Run the previous algorithm; at each stage, **guess** (in all possible ways) the red count and use earliest-due-date;
- 2. = recursion with states (i, A), where $1 \le i \le n$ and A is the set of currently "active" intervals;
- 3. + memoization/dynamic programming (DP);

Great, but needs red counts advice.

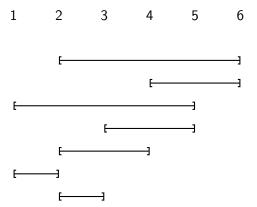
Simulate red counts advice?

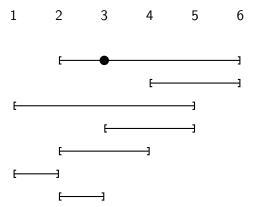
Attempt 1

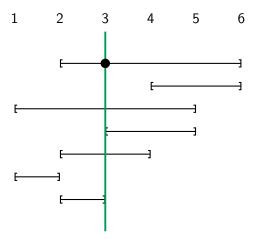
- 1. Run the previous algorithm; at each stage, **guess** (in all possible ways) the red count and use earliest-due-date;
- 2. = recursion with states (i, A), where $1 \le i \le n$ and A is the set of currently "active" intervals;
- 3. + memoization/dynamic programming (DP);

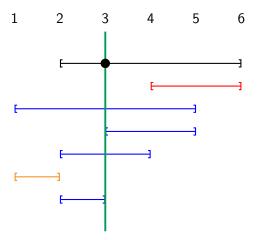
Problem: exponentially many states!

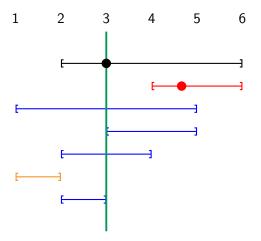
Build an earliest-due-date soln., but not "in the natural order."

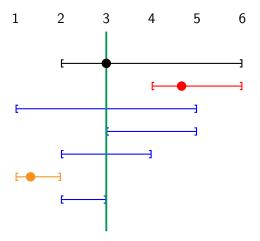


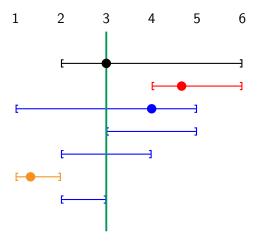


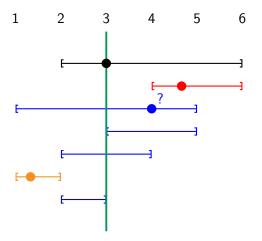


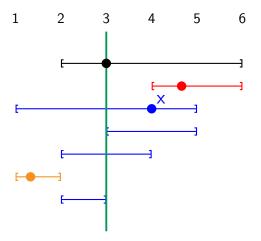


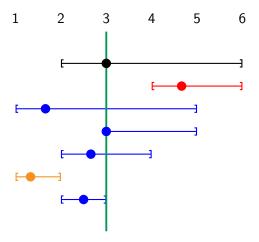


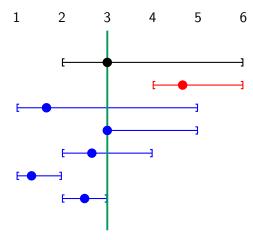




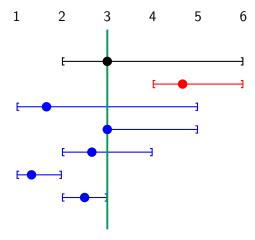






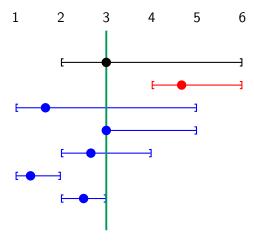


Build an earliest-due-date soln., but not "in the natural order." Idea [Even et al.'2008]:



Crucial: ● ≤ 3 < ●

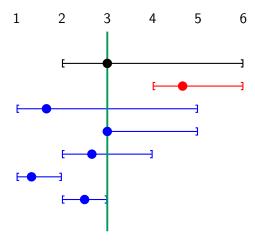
Build an earliest-due-date soln., but not "in the natural order." Idea [Even et al.'2008]:



$$\bullet \leq 3 < \bullet$$

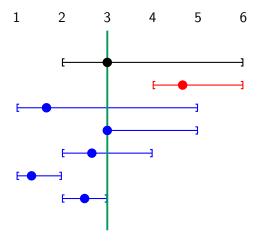
Solve \longmapsto for $\bullet \in [1, 3]$ recursively.

Build an earliest-due-date soln., but not "in the natural order." Idea [Even et al.'2008]:



 $\square = \{i \mid \ell_i \leq 3\}$ $\square = \{i \mid \ell_i > 3\}$ Crucial: ● < 3 < ● Solve \vdash for $\bullet \in [1, 3]$ recursively. Solve \vdash for $\bullet \in [4, 6]$ recursively.

Build an earliest-due-date soln., but not "in the natural order." Idea [Even et al.'2008]:



 $\square = \{i \mid \ell_i \leq 3\}$ $\square = \{i \mid \ell_i > 3\}$ Crucial: ● < 3 < ● Solve \vdash for $\bullet \in [1, 3]$ recursively. (don't forget ●!) Solve \vdash for $\bullet \in [4, 6]$ recursively.

Assume $r_1 \leq \ldots \leq r_n$.

Assume $r_1 \leq \ldots \leq r_n$.

Assume $r_1 \leq \ldots \leq r_n$.

Recursion with state (x_1, x_2, i, c) : (memoization/DP)

Consider only intervals j s.t.: (active set)

Assume $r_1 \leq \ldots \leq r_n$.

Recursion with state (x_1, x_2, i, c) : (memoization/DP)

Consider only intervals j s.t.: (active set)

▶ $\ell_j \in [x_1, x_2]$

Assume $r_1 \leq \ldots \leq r_n$.

- Consider only intervals j s.t.: (active set)
 - $\ell_j \in [x_1, x_2]$ and
 - $j \leq i$. (roughly same as: $r_j \in [1, r_i]$)

Assume $r_1 \leq \ldots \leq r_n$.

- Consider only intervals j s.t.: (active set)
 - $\ell_j \in [x_1, x_2]$ and • $j \leq i$. (roughly same as: $r_i \in [1, r_i]$)
- Select a point for each interval in [x₁, x₂] to satisfy the divisibility constraints.

Assume $r_1 \leq \ldots \leq r_n$.

- Consider only intervals j s.t.: (active set)
 - $\ell_j \in [x_1, x_2]$ and • $j \leq i$. (roughly same as: $r_i \in [1, r_i]$)
- Select a point for each interval in [x₁, x₂] to satisfy the divisibility constraints.
- Assuming c exogenous points \bullet already present at x_2 .

Assume $r_1 \leq \ldots \leq r_n$.

Recursion with state (x_1, x_2, i, c) : (memoization/DP)

- Consider only intervals j s.t.: (active set)
 - ▶ $l_j \in [x_1, x_2]$ and ▶ $j \leq i$. (roughly same as: $r_i \in [1, r_i]$)
- Select a point for each interval in [x₁, x₂] to satisfy the divisibility constraints.
- Assuming c exogenous points \bullet already present at x_2 .

To implement:

Assume $r_1 \leq \ldots \leq r_n$.

Recursion with state (x_1, x_2, i, c) : (memoization/DP)

- Consider only intervals j s.t.: (active set)
 - $\ell_j \in [x_1, x_2]$ and • $j \leq i$. (roughly same as: $r_i \in [1, r_i]$)
- Select a point for each interval in [x₁, x₂] to satisfy the divisibility constraints.
- Assuming c exogenous points \bullet already present at x_2 .

To implement: w.l.o.g. j = i is **active**.

Assume $r_1 \leq \ldots \leq r_n$.

Recursion with state (x_1, x_2, i, c) : (memoization/DP)

- Consider only intervals j s.t.: (active set)
 - $\ell_j \in [x_1, x_2]$ and • $j \leq i$. (roughly same as: $r_i \in [1, r_i]$)
- Select a point for each interval in [x₁, x₂] to satisfy the divisibility constraints.
- Assuming c exogenous points \bullet already present at x_2 .

To implement: w.l.o.g. j = i is active. Try out all possibilities $\bullet \in [\ell_i, r_i] \cap [x_1, x_2]$ for *i*'s point,

Assume $r_1 \leq \ldots \leq r_n$.

Recursion with state (x_1, x_2, i, c) : (memoization/DP)

- Consider only intervals j s.t.: (active set)
 - $\ell_j \in [x_1, x_2]$ and • $j \leq i$. (roughly same as: $r_i \in [1, r_i]$)
- Select a point for each interval in [x₁, x₂] to satisfy the divisibility constraints.
- Assuming c exogenous points \bullet already present at x_2 .

To implement: w.l.o.g. j = i is active. Try out all possibilities • $\in [\ell_i, r_i] \cap [x_1, x_2]$ for *i*'s point, recurse left and right for each.

Assume $r_1 \leq \ldots \leq r_n$.

Recursion with state (x_1, x_2, i, c) : (memoization/DP)

- Consider only intervals j s.t.: (active set)
 - $\ell_j \in [x_1, x_2]$ and • $j \leq i$. (roughly same as: $r_i \in [1, r_i]$)
- Select a point for each interval in [x₁, x₂] to satisfy the divisibility constraints.
- Assuming c exogenous points \bullet already present at x_2 .

To implement: w.l.o.g. j = i is active. Try out all possibilities • $\in [\ell_i, r_i] \cap [x_1, x_2]$ for *i*'s point, recurse left and right for each.

Time complexity: $\mathcal{O}(n^5)$

Assume $r_1 \leq \ldots \leq r_n$.

Recursion with state (x_1, x_2, i, c) : (memoization/DP)

- Consider only intervals j s.t.: (active set)
 - $\ell_j \in [x_1, x_2]$ and • $j \leq i$. (roughly same as: $r_j \in [1, r_i]$)
- Select a point for each interval in [x₁, x₂] to satisfy the divisibility constraints.
- Assuming c exogenous points \bullet already present at x_2 .

To implement: w.l.o.g. j = i is active. Try out all possibilities • $\in [\ell_i, r_i] \cap [x_1, x_2]$ for *i*'s point, recurse left and right for each.

Time complexity: $\mathcal{O}(n^5)$ (open: better?)

HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.

- HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.
 - Same DP, but make it return the minimum number of deleted agents instead of yes/no.

- HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.
 - Same DP, but make it return the minimum number of deleted agents instead of yes/no. Time complexity: O(n⁵)

- HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.
 - Same DP, but make it return the minimum number of deleted agents instead of yes/no. Time complexity: O(n⁵)
- HIKING-X-DELETE: Delete exactly x agents to make the rest feasible.

- HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.
 - Same DP, but make it return the minimum number of deleted agents instead of yes/no. Time complexity: O(n⁵)
- HIKING-X-DELETE: Delete exactly x agents to make the rest feasible.
 - Add another variable to the DP.

- HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.
 - Same DP, but make it return the minimum number of deleted agents instead of yes/no. Time complexity: O(n⁵)
- HIKING-X-DELETE: Delete exactly x agents to make the rest feasible.

- HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.
 - Same DP, but make it return the minimum number of deleted agents instead of yes/no. Time complexity: O(n⁵)
- HIKING-X-DELETE: Delete exactly x agents to make the rest feasible.

Add another variable to the DP. Time complexity: $\mathcal{O}(n^7)$

 HIKING-MAX-SATISFIED: Satisfy as many agents as possible.

- HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.
 - Same DP, but make it return the minimum number of deleted agents instead of yes/no. Time complexity: O(n⁵)
- HIKING-X-DELETE: Delete exactly x agents to make the rest feasible.

Add another variable to the DP. Time complexity: $\mathcal{O}(n^7)$

 HIKING-MAX-SATISFIED: Satisfy as many agents as possible.

Binary search for the number of unsatisfied agents k.

- HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.
 - Same DP, but make it return the minimum number of deleted agents instead of yes/no. Time complexity: O(n⁵)
- HIKING-X-DELETE: Delete exactly x agents to make the rest feasible.

- HIKING-MAX-SATISFIED: Satisfy as many agents as possible.
 - Binary search for the number of unsatisfied agents k. Need to find N' ⊆ N with |N'| = k

- HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.
 - Same DP, but make it return the minimum number of deleted agents instead of yes/no. Time complexity: O(n⁵)
- HIKING-X-DELETE: Delete exactly x agents to make the rest feasible.

- HIKING-MAX-SATISFIED: Satisfy as many agents as possible.
 - ▶ Binary search for the number of unsatisfied agents k. Need to find $N' \subseteq N$ with |N'| = k such that $(N \cup D_k) \setminus N'$ is feasible, where D_k are k dummies.

- HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.
 - Same DP, but make it return the minimum number of deleted agents instead of yes/no. Time complexity: O(n⁵)
- HIKING-X-DELETE: Delete exactly x agents to make the rest feasible.

- HIKING-MAX-SATISFIED: Satisfy as many agents as possible.
 - ▶ Binary search for the number of unsatisfied agents k. Need to find $N' \subseteq N$ with |N'| = k such that $(N \cup D_k) \setminus N'$ is feasible, where D_k are k dummies. This is done with HIKING-X-DELETE.

Extensions

- HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.
 - Same DP, but make it return the minimum number of deleted agents instead of yes/no. Time complexity: O(n⁵)
- HIKING-X-DELETE: Delete exactly x agents to make the rest feasible.

Add another variable to the DP. Time complexity: $\mathcal{O}(n^7)$

- HIKING-MAX-SATISFIED: Satisfy as many agents as possible.
 - ▶ Binary search for the number of unsatisfied agents k. Need to find $N' \subseteq N$ with |N'| = k such that $(N \cup D_k) \setminus N'$ is feasible, where D_k are k dummies. This is done with HIKING-X-DELETE.

• Time complexity: $\mathcal{O}(n^7 \log n)$;

Extensions

- HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.
 - Same DP, but make it return the minimum number of deleted agents instead of yes/no. Time complexity: O(n⁵)
- HIKING-X-DELETE: Delete exactly x agents to make the rest feasible.

Add another variable to the DP. Time complexity: $\mathcal{O}(n^7)$

- HIKING-MAX-SATISFIED: Satisfy as many agents as possible.
 - ▶ Binary search for the number of unsatisfied agents k. Need to find $N' \subseteq N$ with |N'| = k such that $(N \cup D_k) \setminus N'$ is feasible, where D_k are k dummies. This is done with HIKING-X-DELETE.
 - **Time complexity:** $\mathcal{O}(n^7 \log n)$;
 - Binary search is not needed actually, so $\mathcal{O}(n^7)$.

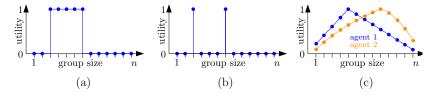
Extensions

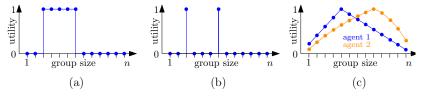
- HIKING-MIN-DELETE: Delete a minimum number of agents to make the rest feasible.
 - Same DP, but make it return the minimum number of deleted agents instead of yes/no. Time complexity: O(n⁵)
- HIKING-X-DELETE: Delete exactly x agents to make the rest feasible.

Add another variable to the DP. Time complexity: $\mathcal{O}(n^7)$

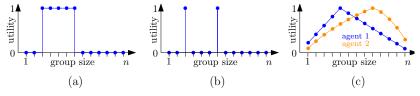
- HIKING-MAX-SATISFIED: Satisfy as many agents as possible.
 - ▶ Binary search for the number of unsatisfied agents k. Need to find $N' \subseteq N$ with |N'| = k such that $(N \cup D_k) \setminus N'$ is feasible, where D_k are k dummies. This is done with HIKING-X-DELETE.
 - Time complexity: $\mathcal{O}(n^7 \log n)$;
 - Binary search is not needed actually, so O(n⁷).

weighted extensions . . .



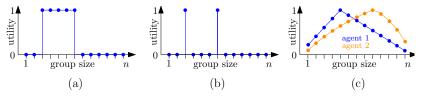


Given:



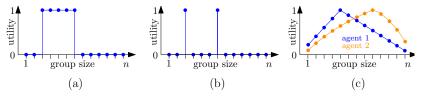
Given:

 \triangleright *n* agents, each agent *i* with preferred group size s_i ;



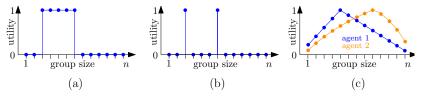
Given:

- > *n* agents, each agent *i* with preferred group size s_i ;
- Global function $f : \mathbb{R}^2 \to \mathbb{R}$; e.g., f(x, y) = |x y|;



Given:

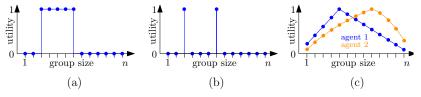
- n agents, each agent i with preferred group size s_i;
- Global function $f : \mathbb{R}^2 \to \mathbb{R}$; e.g., f(x, y) = |x y|;
- Agent *i* being in a group of size *s* incurs cost $f(s_i, s)$.



Given:

- *n* agents, each agent *i* with preferred group size s_i ;
- ▶ Global function $f : \mathbb{R}^2 \to \mathbb{R}$; e.g., f(x, y) = |x y|;

Agent *i* being in a group of size *s* incurs cost *f*(*s_i*, *s*).
Goal:

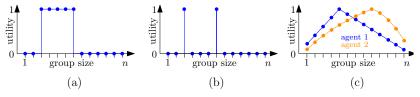


Given:

- n agents, each agent i with preferred group size s_i;
- Global function $f : \mathbb{R}^2 \to \mathbb{R}$; e.g., f(x, y) = |x y|;

► Agent *i* being in a group of size *s* incurs cost *f*(*s_i*, *s*). Goal:

Partition that minimizes the total/maximum cost of an agent.

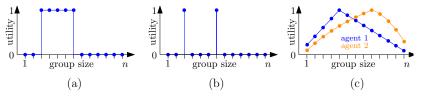


Given:

- n agents, each agent i with preferred group size s_i;
- Global function $f : \mathbb{R}^2 \to \mathbb{R}$; e.g., f(x, y) = |x y|;

► Agent *i* being in a group of size *s* incurs cost *f*(*s_i*, *s*). Goal:

Partition that minimizes the total/maximum cost of an agent.
Results:

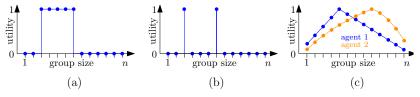


Given:

- n agents, each agent i with preferred group size s_i;
- ▶ Global function $f : \mathbb{R}^2 \to \mathbb{R}$; e.g., f(x, y) = |x y|;

► Agent *i* being in a group of size *s* incurs cost *f*(*s_i*, *s*). Goal:

Partition that minimizes the total/maximum cost of an agent. **Results:** Under assumptions on f, we solve both versions in $\mathcal{O}(n^2)$ time.



Given:

- n agents, each agent i with preferred group size s_i;
- Global function $f : \mathbb{R}^2 \to \mathbb{R}$; e.g., f(x, y) = |x y|;

► Agent *i* being in a group of size *s* incurs cost *f*(*s_i*, *s*). Goal:

Partition that minimizes the total/maximum cost of an agent. **Results:** Under assumptions on f, we solve both versions in $\mathcal{O}(n^2)$ time. And can even find the best that can be achieved by removing at most α agents in time $\mathcal{O}(n^2(\alpha + 1))$.

Open Problems

Approximation algorithms/FPT for the NP-hard cases.

Open Problems

- ► Approximation algorithms/FPT for the NP-hard cases.
- Strategic aspects for the optimization variants.

Open Problems

- Approximation algorithms/FPT for the NP-hard cases.
- Strategic aspects for the optimization variants.

Gerhard Woeginger (1964-2022) RIP