Proportional Representation under Single-Crossing Preferences Revisited

Andrei Constantinescu Edith Elkind

University of Oxford

1.
 Framework

Multiwinner Voting \& The Chamberlin-Courant Rule

Framework

Framework

In an election N voters vote for M candidates.

Framework

In an election N voters vote for M candidates.

Voters express preference by ordering candidates.

Framework

In an election N voters vote for M candidates.

Voters express preference by ordering candidates.

$$
\text { e.g. } N=3, M=5:
$$

Framework

In an election N voters vote for M candidates.

Voters express preference by ordering candidates.

$$
\text { e.g. } N=3, M=5:
$$

V1 $:$ Blue $>$ Yellow $>$ Red $>$ Pink $>$ Green
V2 $:$ Yellow $>$ Green $>$ Red $>$ Pink $>$ Blue
V3 $:$ Green $>$ Red $>$ Blue $>$ Pink $>$ Yellow

Framework

In an election N voters vote for M candidates.

Voters express preference by ordering candidates.

$$
\begin{aligned}
& \text { e.g. } \mathbf{N}=\mathbf{3}, \mathbf{M}=5: \\
& \text { v1 }: \text { Blue }>\text { Yellow }>\text { Red }>\text { Pink }>\text { Green } \\
& \text { V2 }: \text { Yellow }>\text { Green }>\text { Red }>\text { Pink }>\text { Blue } \\
& \text { V3 }: \text { Green }>\text { Red }>\text { Blue }>\text { Pink }>\text { Yellow }
\end{aligned}
$$

Multiwinner Voting Rules

Multiwinner Voting Rules

Given a preference profile we need to select a committee of K candidates to represent the electorate.

Multiwinner Voting Rules

Given a preference profile we need to select a committee of K candidates to represent the electorate.
e.g. $K=2$

Multiwinner Voting Rules

Given a preference profile we need to select a committee of K candidates to represent the electorate.
e.g. $K=2$
V1 $:$ Blue $>$ Yellow $>$ Red $>$ Pink $>$ Green
V2 $:$ Yellow $>$ Green $>$ Red $>$ Pink $>$ Blue
V3 : Green $>$ Red $>$ Blue $>$ Pink $>$ Yellow

Multiwinner Voting Rules

Given a preference profile we need to select a committee of K candidates to represent the electorate.
e.g. $K=2$

Multiwinner Voting Rules

Given a preference profile we need to select a committee of K candidates to represent the electorate.
e.g. $K=2$

Multiwinner Voting Rules

Given a preference profile we need to select a committee of K candidates to represent the electorate.
e.g. $K=2$

Q : How do we pick the K -committee?

The Chamberlin-Courant Rule

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate.

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate. Need to pick the K-committee that minimizes the total/maximum dissatisfaction.

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate. Need to pick the K-committee that minimizes the total/maximum dissatisfaction.

```
V1 : Blue > Yellow > Red > Pink > Green
V2 : Yellow > Green > Red > Pink > Blue
V3 : Green > Red > Blue > Pink > Yellow
```


The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate. Need to pick the K-committee that minimizes the total/maximum dissatisfaction.

	0		1		5		8		9
V1	Blue	>	Yellow	>	Red	>	Pink	>	Green
	0		3		3		4		8
V2	Yellow	>	Green	>	Red	>	Pink	>	Blue
	0		1		1		2		3
V3	Green		Red	>	Blue	>	Pink	>	Yellow

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate. Need to pick the K-committee that minimizes the total/maximum dissatisfaction.

V1		1			8			
		>	Yellow	>	>	Pink	>	
	0					4		
V2	Yellow	>		>	>	Pink	>	
						2		3
V3		>		>		Pink	>	Yellow

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate. Need to pick the K-committee that minimizes the total/maximum dissatisfaction.

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate. Need to pick the K-committee that minimizes the total/maximum dissatisfaction.

Total = $\mathbf{3}$ (Utilitarian-CC)

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate. Need to pick the K-committee that minimizes the total/maximum dissatisfaction.

Total = 3 (Utilitarian-CC)
Maximum = 2 (Egalitarian-CC) [Betzler, Slinko, Uhlmann'13]

The Chamberlin-Courant Rule

Voters specify their dissatisfaction with each candidate. Need to pick the K-committee that minimizes the total/maximum dissatisfaction.

Total = $\mathbf{3}$ (Utilitarian-CC) - in this talk
Maximum $=\mathbf{2}$ (Egalitarian-CC) [Betzler, Slinko, Uhlmann'13]

Hardness of CC

Hardness of CC

Utilitarian-CC is NP-hard
[Procaccia, Rosenschein, Zohar'08]
[Lu, Boutilier'11]

Egalitarian-CC is NP-hard
[Betzler, Slinko, Uhlmann'13]

A way out!
-

A way out!

Real elections have more structure, making CC easier!

A way out!

Real elections have more structure, making CC easier! We consider single-crossing preferences.
[Roberts'77, Mirrlees'71]

Structured Preferences

Single-crossing Preferences \&
Intermediate Preferences on Median Graphs

Single-crossing Preferences

Single-crossing Preferences

A profile is single-crossing if we can order the voters so that preference between any two candidates a, b changes at most once as we go through the candidates in order:

Single-crossing Preferences

A profile is single-crossing if we can order the voters so that preference between any two candidates a, b changes at most once as we go through the candidates in order:

```
\mp@subsup{v}{1}{\prime}}:\mathrm{ : Blue > Yellow
\mp@subsup{V}{2}{}}:\mathrm{ : Blue > Yellow
\mp@subsup{\mathbf{V}}{\mathbf{3}}{}: Yellow > Blue
\mp@subsup{\mathbf{V}}{4}{}}\mathrm{ : Yellow > Blue
```


Single-crossing Preferences

A profile is single-crossing if we can order the voters so that preference between any two candidates a, b changes at most once as we go through the candidates in order:

```
\mp@subsup{V}{1}{}}:\mathrm{ : Blue > Yellow
\mp@subsup{V}{2}{}}:\mathrm{ : Blue > Yellow
\mp@subsup{\mathbf{V}}{\mathbf{3}}{}: Yellow > Blue
\mp@subsup{\mathbf{V}}{4}{}}\mathrm{ : Yellow > Blue
```


Single-crossing Preferences

A profile is single-crossing if we can order the voters so that preference between any two candidates a, b changes at most once as we go through the candidates in order:

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}}: \text { Blue }>\text { Yellow } \\
& \mathbf{v}_{\mathbf{2}}: \text { Blue }>\text { Yellow } \\
& \mathbf{v}_{\mathbf{3}}: \text { Yellow }>\text { Blue } \\
& \mathbf{v}_{\mathbf{4}}: \text { Yellow }>\text { Blue }
\end{aligned} \begin{aligned}
& \mathbf{v}_{\mathbf{1}}: \text { Blue }>\text { Yellow } \\
& \mathbf{v}_{\mathbf{2}}: \text { Blue }
\end{aligned}
$$

Single-crossing Preferences

A profile is single-crossing if we can order the voters so that preference between any two candidates a, b changes at most once as we go through the candidates in order:

Some Properties of SC

Some Properties of SC

- Majority relation is acyclic, so Condorcet winner exists.*
*For odd n.

Some Properties of SC

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
*For odd n.

Some Properties of SC

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
- CC can be solved in polynomial time. [Skowron et al.'15]

Some Properties of SC

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
- CC can be solved in polynomial time. [Skowron et al.'15]

Problem: Not many real elections are SC.
*For odd n.

Some Properties of SC

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
- CC can be solved in polynomial time. [Skowron et al.'15]

Problem: Not many real elections are SC. Extend notion?
*For odd n.

Some Properties of SC

- Majority relation is acyclic, so Condorcet winner exists.*
- Profiles admit a median voter. [Rothstein'91]
- CC can be solved in polynomial time. [Skowron et al.'15]

Problem: Not many real elections are SC. Extend notion?
Difficulty: Preserve Condorcet domain and poly-time solvability of CC.
*For odd n.

Generalized SC

Generalized SC

[Demange'12] introduces intermediate preferences indexed by a median graph.

Generalized SC

[Demange'12] introduces intermediate preferences indexed by a median graph.
[Puppe, Slinko'17] show this is necessary and sufficient to get a Condorcet domain.

Generalized SC

[Demange'12] introduces intermediate preferences indexed by a median graph.
[Puppe, Slinko'17] show this is necessary and sufficient to get a Condorcet domain.

Generalized SC

[Demange'12] introduces intermediate preferences indexed by a median graph.
[Puppe, Slinko'17] show this is necessary and sufficient to get a Condorcet domain.

Generalized SC

[Demange'12] introduces intermediate preferences indexed by a median graph.
[Puppe, Slinko'17] show this is necessary and sufficient to get a Condorcet domain.

Generalized SC

A preference profile is single-crossing with respect to a median graph having the voters as vertices iff the sub-profile induced by any shortest path between any two vertices is classically single-crossing.

Generalized SC

A preference profile is single-crossing with respect to a median graph having the voters as vertices iff the sub-profile induced by any shortest path between any two vertices is classically single-crossing.

Generalized SC

A preference profile is single-crossing with respect to a median graph having the voters as vertices iff the sub-profile induced by any shortest path between any two vertices is classically single-crossing.

Generalized SC

A preference profile is single-crossing with respect to a median graph having the voters as vertices iff the sub-profile induced by any shortest path between any two vertices is classically single-crossing.

Generalized SC

A preference profile is single-crossing with respect to a median graph having the voters as vertices iff the sub-profile induced by any shortest path between any two vertices is classically single-crossing.

3.
 This Paper

Our Contribution

Our Contribution

Our Contribution

1. We improve the current time complexity of $O\left(n^{2} m k\right)$ for CC under classical-SC achieved by [Skowron et al.'15]:

Our Contribution

1. We improve the current time complexity of $O\left(n^{2} m k\right)$ for CC under classical-SC achieved by [Skowron et al.'15]:

- A simple tweak gives O (nmk).

Our Contribution

1. We improve the current time complexity of $O\left(n^{2} m k\right)$ for CC under classical-SC achieved by [Skowron et al.'15]:

- A simple tweak gives O(nmk).
- Using Monge-concavity we further get $n m 2^{O(\sqrt{\log k \log \log n})}$.

Our Contribution

1. We improve the current time complexity of $O\left(n^{2} m k\right)$ for CC under classical-SC achieved by [Skowron et al.'15]:

- A simple tweak gives O(nmk).
- Using Monge-concavity we further get $n m 2^{O(\sqrt{\log k \log \log n})}$.
- For Borda disutilities we get O(nm log(nm)).

Our Contribution

1. We improve the current time complexity of $O\left(n^{2} m k\right)$ for CC under classical-SC achieved by [Skowron et al.'15]:

- A simple tweak gives O(nmk).
- Using Monge-concavity we further get $n m 2^{O(\sqrt{\log k \log \log n})}$.
- For Borda disutilities we get $O(n m \log (n m))$.

2. [Clearwater et al.'15] proposes an algorithm for CC under tree-SC. Unfortunately, the algorithm is not polynomial as claimed. We give the first polynomial algorithm.

Our Contribution

1. We improve the current time complexity of $O\left(n^{2} m k\right)$ for CC under classical-SC achieved by [Skowron et al.'15]:

- A simple tweak gives O(nmk).
- Using Monge-concavity we further get $n m 2^{O(\sqrt{\log k \log \log n})}$.
- For Borda disutilities we get $O(n m \log (n m))$.

2. [Clearwater et al.'15] proposes an algorithm for CC under tree-SC. Unfortunately, the algorithm is not polynomial as claimed. We give the first polynomial algorithm.
3. Not in this talk: Conjecture DP algorithm for CC under grid-SC.

CC Under Classical-SC

CC Under Classical-SC

Key observation: in any K-committee the candidates representing the voters partition the voters into continuous subsegments.

CC Under Classical-SC

Key observation: in any K-committee the candidates representing the voters partition the voters into continuous subsegments.
e.g. K = $\mathbf{3}$

CC Under Classical-SC

Key observation: in any K-committee the candidates representing the voters partition the voters into continuous subsegments.
e.g. K = 3
Blue $>$ Yellow $>$ Red $>$ Green
Blue $>$ Red $>$ Yellow $>$ Green
Red $>$ Blue $>$ Green $>$ Yellow
Red $>$ Green $>$ Yellow $>$ Blue
Green $>$ Red $>$ Yellow $>$ Blue

CC Under Classical-SC

Key observation: in any K-committee the candidates representing the voters partition the voters into continuous subsegments.
e.g. $\mathbf{K}=\mathbf{3}$; say we removed Yellow

Blue	>	> Red	> Green
Blue	> Red	>	> Green
Red	> Blue	> Green	>
Red	> Green	>	> Blue
Green	> Red	>	Blue

CC Under Classical-SC

Key observation: in any K-committee the candidates representing the voters partition the voters into continuous subsegments.
e.g. $\mathbf{K}=\mathbf{3}$; say we removed Yellow

Blue $>$	$>$ Red	$>$ Green
Blue $>$ Red	$>$	$>$ Green
Red $>$ Blue $>$ Green	$>$	
Red $>$ Green $>$	$>$ Blue	
Green $>$ Red $>$	$>$ Blue	

CC Under Classical-SC

Key observation: in any K-committee the candidates representing the voters partition the voters into continuous subsegments.
e.g. $K=3$; say we removed Blue

| | $>$ Yellow |
| ---: | :--- |$>$ Red $>$ Green \mid

CC Under Classical-SC

Key observation: in any K-committee the candidates representing the voters partition the voters into continuous subsegments.
e.g. $K=3$; say we removed Blue

		Yellow	>	Red	>	Green
		Red	$>$	Yellow	>	Green
Red	$>$		$>$	Green	>	ellow
Red	$>$	Green	$>$	Yellow	>	
Gree	$>$	Red	>	Yellow	>	

This allows simple interval DP to work [Skowron et al.'15], with more care it can be implemented in O (nmk).

CC Under Classical-SC

Reduction to minimum K-link path in DAG

CC Under Classical-SC

Reduction to minimum K-link path in DAG

- Define $f(i, j)$ for $0 \leq i<j \leq N$ to be the least possible total cost to represent voters $v_{i+1} \ldots v_{j}$ with a single candidate.

CC Under Classical-SC

Reduction to minimum K-link path in DAG

- Define $f(i, j)$ for $0 \leq i<j \leq N$ to be the least possible total cost to represent voters $v_{i+1} \ldots v_{j}$ with a single candidate.
- Define a DAG with vertices $0 \ldots \mathrm{~N}$ and edges (i, j) for $0 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{N}$ of $\operatorname{cost} f(i, j)$.

CC Under Classical-SC

Reduction to minimum K-link path in DAG

- Define $f(i, j)$ for $0 \leq i<j \leq N$ to be the least possible total cost to represent voters $v_{i+1} \ldots v_{j}$ with a single candidate.
- Define a DAG with vertices $0 \ldots \mathrm{~N}$ and edges (i, j) for $0 \leq i<j \leq N$ of cost f(i, j).
- Then, our problem is to find the minimum total weight path starting at 0 , ending at N , and consisting of exactly K edges.

CC Under Classical-SC

Reduction to minimum K-link path in DAG

- Define $f(i, j)$ for $0 \leq i<j \leq N$ to be the least possible total cost to represent voters $v_{i+1} \ldots v_{j}$ with a single candidate.
- Define a DAG with vertices $0 \ldots \mathrm{~N}$ and edges (i, j) for $0 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{N}$ of cost $f(i, j)$.
- Then, our problem is to find the minimum total weight path starting at 0 , ending at N , and consisting of exactly K edges.

Blue $>$	$>$ Red	$>$ Green
Blue	$>$ Red $>$	$>$ Green

Red $>$ Blue $>$ Green	$>$
Red $>$ Green $>$	$>$ Blue

Green > Red \gg Blue

CC Under Classical-SC

Reduction to minimum K-link path in DAG

- Define $f(i, j)$ for $0 \leq i<j \leq N$ to be the least possible total cost to represent voters $v_{i+1} \ldots v_{j}$ with a single candidate.
- Define a DAG with vertices $0 \ldots \mathrm{~N}$ and edges (i, j) for $0 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{N}$ of cost f(i, j).
- Then, our problem is to find the minimum total weight path starting at 0 , ending at N , and consisting of exactly K edges.

Blue	>	> Red	> Green
Blue	> Red	>	> Green
Red	> Blue	> Green	>
Red	> Green	>	> Blue
Green	$>$ Red	>	> Blue

CC Under Classical-SC

Lemma Assume $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d}$, then it holds that $\mathrm{f}(\mathrm{a}, \mathrm{c})+\mathrm{f}(\mathrm{b}, \mathrm{d}) \leq$ $f(a, d)+f(b, c)$ (i.e. the costs f are Monge-concave).

CC Under Classical-SC

Lemma Assume $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d}$, then it holds that $\mathrm{f}(\mathrm{a}, \mathrm{c})+\mathrm{f}(\mathrm{b}, \mathrm{d}) \leq$ $f(a, d)+f(b, c)$ (i.e. the costs f are Monge-concave).
Proof Idea First, show by contradiction that if there is a counterexample, then there is one with $\mathbf{N}=\mathbf{3}$.

CC Under Classical-SC

Lemma Assume $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d}$, then it holds that $\mathrm{f}(\mathrm{a}, \mathrm{c})+\mathrm{f}(\mathrm{b}, \mathrm{d}) \leq$ $f(a, d)+f(b, c)$ (i.e. the costs f are Monge-concave).
Proof Idea First, show by contradiction that if there is a counterexample, then there is one with $\mathbf{N}=\mathbf{3}$.
As a result, we get Monge-concave instances of the minimum K-link path problem for DAGs. Relevant work:

CC Under Classical-SC

Lemma Assume $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d}$, then it holds that $\mathrm{f}(\mathrm{a}, \mathrm{c})+\mathrm{f}(\mathrm{b}, \mathrm{d}) \leq$ $f(a, d)+f(b, c)$ (i.e. the costs f are Monge-concave).
Proof Idea First, show by contradiction that if there is a counterexample, then there is one with $\mathbf{N}=\mathbf{3}$.
As a result, we get Monge-concave instances of the minimum K-link path problem for DAGs. Relevant work:

- [Bein, Larmore, Park'92], [Aggarwal, Schieber, Tokuyama'94] - Give $O(n \log (n U))$ algorithm, where U bounds dissatisfactions.

CC Under Classical-SC

Lemma Assume $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d}$, then it holds that $\mathrm{f}(\mathrm{a}, \mathrm{c})+\mathrm{f}(\mathrm{b}, \mathrm{d}) \leq$ $f(a, d)+f(b, c)$ (i.e. the costs f are Monge-concave).
Proof Idea First, show by contradiction that if there is a counterexample, then there is one with $\mathbf{N}=\mathbf{3}$.
As a result, we get Monge-concave instances of the minimum K-link path problem for DAGs. Relevant work:

- [Bein, Larmore, Park'92], [Aggarwal, Schieber, Tokuyama'94] - Give
$O(n \log (n U))$ algorithm, where U bounds dissatisfactions.
- [Schieber'95] - Gives $n 2^{O(\sqrt{\log k \log \log n})}$ for $k=\Omega(\log n)$.

CC Under Classical-SC

Lemma Assume $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d}$, then it holds that $\mathrm{f}(\mathrm{a}, \mathrm{c})+\mathrm{f}(\mathrm{b}, \mathrm{d}) \leq$ $f(a, d)+f(b, c)$ (i.e. the costs f are Monge-concave).
Proof Idea First, show by contradiction that if there is a counterexample, then there is one with $\mathbf{N}=\mathbf{3}$.
As a result, we get Monge-concave instances of the minimum K-link path problem for DAGs. Relevant work:

- [Bein, Larmore, Park'92], [Aggarwal, Schieber, Tokuyama'94] - Give
$O(n \log (n U))$ algorithm, where U bounds dissatisfactions.
- [Schieber'95] - Gives $n 2^{O(\sqrt{\log k \log \log n})}$ for $k=\Omega(\log n)$.

Need extra factor of m due to time to compute $f(i, j)$!

CC Under Classical-SC

Lemma Assume $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d}$, then it holds that $\mathrm{f}(\mathrm{a}, \mathrm{c})+\mathrm{f}(\mathrm{b}, \mathrm{d}) \leq$ $f(a, d)+f(b, c)$ (i.e. the costs f are Monge-concave).
Proof Idea First, show by contradiction that if there is a counterexample, then there is one with $\mathbf{N}=\mathbf{3}$.
As a result, we get Monge-concave instances of the minimum K-link path problem for DAGs. Relevant work:

- [Bein, Larmore, Park'92], [Aggarwal, Schieber, Tokuyama'94] - Give
$O(n \log (n U))$ algorithm, where U bounds dissatisfactions.
- [Schieber'95] - Gives $n 2^{O(\sqrt{\log k \log \log n})}$ for $k=\Omega(\log n)$.

Need extra factor of m due to time to compute $f(i, j)$)
Remark For egalitarian, binary search the answer and then run algorithm on instance with 0-1 dissatisfactions.
This gives $O(n m \log n \log (n m))$.

CC Under Tree-SC

CC Under Tree-SC

Similar Connectivity Observation: In any K-committee the candidates representing the voters partition the voters into connected subtrees.

CC Under Tree-SC

Similar Connectivity Observation: In any K-committee the candidates representing the voters partition the voters into connected subtrees.

CC Under Tree-SC

Similar Connectivity Observation: In any K-committee the candidates representing the voters partition the voters into connected subtrees.

CC Under Tree-SC

Assume candidates are numbered $1,2, \ldots, \mathrm{M}$. Root the tree and assume that the root has the order $1>2>\ldots>M$.

CC Under Tree-SC

Assume candidates are numbered $1,2, \ldots, \mathrm{M}$. Root the tree and assume that the root has the order $1>2>\ldots>M$.

CC Under Tree-SC

Assume candidates are numbered $1,2, \ldots, \mathrm{M}$. Root the tree and assume that the root has the order $1>2>\ldots>M$.

Monotonicity Lemma

In any K-committee, while walking down the tree the representing candidate is non-decreasing.

CC Under Tree-SC

Assume candidates are numbered $1,2, \ldots, \mathrm{M}$. Root the tree and assume that the root has the order $1>2>\ldots>M$.

Monotonicity Lemma (ins. [Clearwater et al.'15])
In any K-committee, while walking down the tree the representing candidate is non-decreasing.

CC Under Tree-SC

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}.

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}.

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}. Define T_{i} to be the downwards subtree of v_{i}.

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}. Define T_{i} to be the downwards subtree of v_{i}.

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}. Define T_{i} to be the downwards subtree of v_{i}.
- Define $d p\left[v_{i}\right][c][k]$ to be the least possible dissatisfaction of voters in T_{i} if we are allowed to use at most k candidates from the set c, $c+1, \ldots, m$;

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}. Define T_{i} to be the downwards subtree of v_{i}.
- Define $d p\left[v_{i}\right][c][k]$ to be the least possible dissatisfaction of voters in T_{i} if we are allowed to use at most k candidates from the set $c, c+1, \ldots, m$; and $d p '\left[v_{i}\right][c][k]$ to be the same, but enforcing v_{i} is represented by candidate c.

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}. Define T_{i} to be the downwards subtree of v_{i}.
- Define $d p\left[v_{i}\right][c][k]$ to be the least possible dissatisfaction of voters in T_{i} if we are allowed to use at most k candidates from the set $c, c+1, \ldots, m$; and $d p '\left[v_{i}\right][c][k]$ to be the same, but enforcing v_{i} is represented by candidate c.

Interesting case: A node v with two children I and r.

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}. Define T_{i} to be the downwards subtree of v_{i}.
- Define $d p\left[v_{i}\right][c][k]$ to be the least possible dissatisfaction of voters in T_{i} if we are allowed to use at most k candidates from the set $c, c+1, \ldots, m$; and $d p '\left[v_{i}\right][c][k]$ to be the same, but enforcing v_{i} is represented by candidate c.

Interesting case: A node v with two children I and r.

$d p[v][c][k]=\min \{d p '[v][c][k], \operatorname{dp}[v][c+1][k]\}$

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}. Define T_{i} to be the downwards subtree of v_{i}.
- Define $d p\left[v_{i}\right][c][k]$ to be the least possible dissatisfaction of voters in T_{i} if we are allowed to use at most k candidates from the set $c, c+1, \ldots, m$; and $d p '\left[v_{i}\right][c][k]$ to be the same, but enforcing v_{i} is represented by candidate c.

Interesting case: A node v with two children I and r.

$$
\begin{aligned}
& \mathrm{dp}[\mathrm{v}][\mathrm{c}][\mathrm{k}]=\min \{\mathrm{dp} \cdot[\mathrm{v}][\mathrm{c}][\mathrm{k}], \operatorname{dp}[\mathrm{v}][\mathrm{c}+1][\mathrm{k}]\} \\
& \mathrm{dp} \mathrm{p}^{\prime}[\mathrm{v}][\mathrm{c}][\mathrm{k}]=\operatorname{dis}(\mathrm{v}, \mathrm{c})
\end{aligned}
$$

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}. Define T_{i} to be the downwards subtree of v_{i}.
- Define $d p\left[v_{i}\right][c][k]$ to be the least possible dissatisfaction of voters in T_{i} if we are allowed to use at most k candidates from the set $c, c+1, \ldots, m$; and $d p '\left[v_{i}\right][c][k]$ to be the same, but enforcing v_{i} is represented by candidate c.

Interesting case: A node v with two children I and r.

$$
\begin{aligned}
& d p[v][c][k]=\min \left\{d p^{\prime}[v][c][k], \operatorname{dp}[v][c+1][k]\right\} \\
& d p^{\prime}[v][c][k]=\operatorname{dis}(v, c) \\
& \quad+\min \left\{d p^{\prime}[l][c] \quad\left[k^{\prime}\right]+\operatorname{dp} p^{\prime}[r][c] \quad\left[k-k^{\prime}\right],\right.
\end{aligned}
$$

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}. Define T_{i} to be the downwards subtree of v_{i}.
- Define $d p\left[v_{i}\right][c][k]$ to be the least possible dissatisfaction of voters in T_{i} if we are allowed to use at most k candidates from the set $c, c+1, \ldots, m$; and $d p '\left[v_{i}\right][c][k]$ to be the same, but enforcing v_{i} is represented by candidate c.

Interesting case: A node v with two children I and r.

$d p[v][c][k]=\min \left\{d p^{\prime}[v][c][k], \operatorname{dp}[v][c+1][k]\right\}$
dp'[v][c][k] = dis(v, c)
$+\min \left\{d p^{\prime}[l][c] \quad\left[k^{\prime}\right]+d p^{\prime}[r][c] \quad[k-k ']\right.$,
2 k^{\prime} dp'[l][c] [k'] + dp [r][c + 1][k-k'],

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}. Define T_{i} to be the downwards subtree of v_{i}.
- Define $d p\left[v_{i}\right][c][k]$ to be the least possible dissatisfaction of voters in T_{i} if we are allowed to use at most k candidates from the set $c, c+1, \ldots, m$; and $d p '\left[v_{i}\right][c][k]$ to be the same, but enforcing v_{i} is represented by candidate c.

Interesting case: A node v with two children I and r.

$d p[v][c][k]=\min \left\{d p^{\prime}[v][c][k], \operatorname{dp}[v][c+1][k]\right\}$
dp' $[v][c][k]=\operatorname{dis}(v, c)$
$+\min \left\{d p^{\prime}[l][c] \quad\left[k^{\prime}\right]+d p^{\prime}[r][c] \quad[k-k ']\right.$,
$k^{\prime} d p^{\prime}[l][c] \quad\left[k^{\prime}\right]+d p[r][c+1]\left[k-k^{\prime}\right]$,
dp [l][c + 1][k'] + dp'[r][c] [k - k'],

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}. Define T_{i} to be the downwards subtree of v_{i}.
- Define $d p\left[v_{i}\right][c][k]$ to be the least possible dissatisfaction of voters in T_{i} if we are allowed to use at most k candidates from the set $c, c+1, \ldots, m$; and $d p '\left[v_{i}\right][c][k]$ to be the same, but enforcing v_{i} is represented by candidate c.

Interesting case: A node v with two children I and r.

$d p[v][c][k]=\min \left\{d p^{\prime}[v][c][k], \operatorname{dp}[v][c+1][k]\right\}$
dp'[v][c][k] = dis(v, c)
$+\min \left\{d p^{\prime}[l][c] \quad\left[k^{\prime}\right]+d p^{\prime}[r][c] \quad[k-k ']\right.$,
$k^{\prime} d p^{\prime}[l][c] \quad\left[k^{\prime}\right]+d p[r][c+1]\left[k-k^{\prime}\right]$,
$d p$ [l][c + 1][k'] + dp'[r][c] [k - k'],
$\left.d p[1][c+1]\left[k^{\prime}\right]+d p[r][c+1]\left[k-k^{\prime}-1\right]\right\}$

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}. Define T_{i} to be the downwards subtree of v_{i}.
- Define $d p\left[v_{i}\right][c][k]$ to be the least possible dissatisfaction of voters in T_{i} if we are allowed to use at most k candidates from the set $c, c+1, \ldots, m$; and $d p '\left[v_{i}\right][c][k]$ to be the same, but enforcing v_{i} is represented by candidate c.

Interesting case: A node v with two children I and r.

$$
\begin{array}{ll}
\operatorname{dp}[v][c][k]=\min \left\{d p^{\prime}[v][c][k], \operatorname{dp}[v][c+1][k]\right\} & -O(n m k) \text { states, but } \\
d p h^{\prime}[v][c][k]=\operatorname{dis}(v, c) & O\left(n m k^{2}\right) \text { time! }
\end{array}
$$

$$
\begin{aligned}
& \text { + min \{ dp'[l][c] [k'] + dp'[r][c] [k - k'], } \\
& k^{\prime} d p^{\prime}[l][c] \quad\left[k^{\prime}\right]+d p[r][c+1]\left[k-k^{\prime}\right], \\
& d p \text { [l][c + 1][k'] + dp'[r][c] [k - k'], } \\
& \left.d p[1][c+1]\left[k^{\prime}\right]+d p[r][c+1]\left[k-k^{\prime}-1\right]\right\}
\end{aligned}
$$

CC Under Tree-SC

- Assume tree is binary to simplify presentation - general case is more tricky.
- Say tree is rooted in v_{1}. Define T_{i} to be the downwards subtree of v_{i}.
- Define $d p\left[v_{i}\right][c][k]$ to be the least possible dissatisfaction of voters in T_{i} if we are allowed to use at most k candidates from the set $c, c+1, \ldots, m$; and $d p '\left[v_{i}\right][c][k]$ to be the same, but enforcing v_{i} is represented by candidate c.

Interesting case: A node v with two children I and r.

$$
\begin{aligned}
& \mathrm{dp}[\mathrm{v}][\mathrm{c}][\mathrm{k}]=\min \{\mathrm{dp} \text { '[v][c][k], dp[v][c+1][k]\}-O(nmk)} \text { states, but } \\
& \text { dp'[v][c][k] = dis(v, c) } \\
& \text { + min \{ dp'[l][c] [k'] + dp'[r][c] [k - k'], } \\
& k^{\prime} \quad d p^{\prime}[1][c] \quad\left[k^{\prime}\right]+d p[r][c+1]\left[k-k^{\prime}\right], \quad i m p l e m e n t e d i n \\
& d p \text { [l][c + 1][k'] + dp'[r][c] [k-k'], O(nmk). } \\
& \left.d p[1][c+1]\left[k^{\prime}\right]+d p[r][c+1]\left[k-k^{\prime}-1\right]\right\}
\end{aligned}
$$

Future Directions

Future Directions

1. How to solve CC for grid-SC?

Future Directions

1. How to solve CC for grid-SC?
2. Does some form of concavity hold for trees?

Future Directions

1. How to solve CC for grid-SC?
2. Does some form of concavity hold for trees?
3. Is CC for median graphs NP-hard?

Hope you enjoyed!

Intuition

Intuition

Imagine with every voter/candidate we associate a real number:

Intuition

Imagine with every voter/candidate we associate a real number:

Intuition

Imagine with every voter/candidate we associate a real number:

Voters vote based on how far off a candidate's number is from their own.

