Stable Dinner Party Seating Arrangements

Damien Berriaud Andrei constantinescu Roger Wattenhofer

Distributed Computing Group ElHzürich

1.
 A chaotic dinner

When the round table wreaks havoc

Setting the scene

Setting the scene

Like

$$
\geq 3
$$

Setting the scene

Setting the scene

Setting the scene

Setting the scene

Setting the scene

Preference graph

$$
\geq 3
$$

Setting the scene

Preference graph

Setting the scene

Preference graph

Setting the scene

N vertices seating graph

Setting the scene

Utility: Additive on neighbours

Chaos? Run...

Chaos? Run...

Both strictly improve!

Chaos? Run \& Chase!

Chaos? Run \& Chase!

Chaos? Run \& Chase!

Unstable preferences $=$ There is no stable arrangement!

A few definitions

k-valued

Preferences use at most \boldsymbol{k} values.

A few definitions

k-valued

Preferences use at most \boldsymbol{k} values.
i.e.
$\forall x, y, P(x \rightarrow y) \in O$
$|O| \leq k$

A few definitions

k-valued

Preferences use at most \mathbf{k} values.
i.e.
$\forall x, y, P(x \rightarrow y) \in O$
$|O| \leq k$

A few definitions

k-valued

Preferences use at most \mathbf{k} values.

$$
\begin{gathered}
\forall x, y, P(x \rightarrow y) \in O \\
|O| \leq k
\end{gathered}
$$

k-class

Preferences use at most \mathbf{k} classes.

Indistinguishable agents
=
One class

Example

$\forall x, y, P(x \rightarrow y) \in\{0,1,2\}$

Example

$\forall x, y, P(x \rightarrow y) \in\{0,1,2\}$

3-valued

Example

$\forall x, y, P(x \rightarrow y) \in\{0,1,2\} \vdots$
畨 \neq
－\neq㐨研

Example

$\forall x, y, P(x \rightarrow y) \in\{0,1,2\}$
筧 $8 \neq 1$ 做 \sqrt{V}
3-valued

Results

Does a stable arrangement always exist?

\# Values	\# Classes	≤ 2	3
2			
≥ 3		No	No

On cycles

And on a path?

Irregularity at the extremities:

And on a path?

Irregularity at the extremities:

Either use negative preferences,

And on a path?

Irregularity at the extremities:

Either use negative preferences,

Or consider more agents.

Results

Does a stable arrangement always exist?

On cycles

On paths

Results

Does a stable arrangement always exist?

\# Values	\# Classes	≤ 2	3
2			
≥ 3		No	No

On cycles

\# Values	\# Classes	≤ 2
2		≥ 3
≥ 3		No 1

On paths
${ }^{1}$ With negative preferences

Stability of 2-class preferences

A story in Red \& Blue

Stability of 2-class preferences
 A story in Red \& Blue

\# Values	\# Classes	≤ 2	3
2			
≥ 3		No	No

On cycles

Case analysis

If there is a self-prefering class:

Case analysis

If there is a self-prefering class:

Otherwise:

Results

Does a stable arrangement always exist?

On cycles

\# Values	\# Classes	≤ 2
2		≥ 3
≥ 3		No
	No	

On paths
${ }^{1}$ With negative preferences

Results

Does a stable arrangement always exist?

On cycles

\# Values	\# Classes	≤ 2
2	Yes	No 1
≥ 3	Yes	No

On paths
${ }^{1}$ With negative preferences

3.
 Adding one class?

Headaches incoming...

Adding one class?

Headaches incoming...

\# Values	\# Classes	≤ 2	3
2	Yes		
≥ 3	Yes	No	No

On cycles

Case analysis

- If there is a self-liking class:

Case analysis

- If there is a self-liking class:

Case analysis

- If there is a self-liking class:
- Else if a class likes / is disliked by all others:

Case analysis

- If there is a self-liking class:
- Else if a class likes / is disliked by all others:

- Else, preferences are

Results

Does a stable arrangement always exist?

On cycles

\# Values	\# Classes	≤ 2
2	Yes	No 1
≥ 3	Yes	No

On paths
${ }^{1}$ With negative preferences

Results

Does a stable arrangement always exist?

\# Values	\# Classes	≤ 2	3
2	Yes	Yes	
≥ 3	Yes	No	No

On cycles

\# Values	\# Classes	≤ 2
2	Yes	No 1
≥ 3	Yes	No

On paths
${ }^{1}$ With negative preferences

Unstable binary preferences

Exhausted? We're getting there...

Unstable binary preferences

Exhausted? We're getting there...

\# Values	\# Classes	≤ 2	3
2	Yes	Yes	
≥ 3	Yes	No	No

On cycles

Exhaustion results

Number of unstable binary preference graphs

N	3	4	5	6	7
Cycle	0	0	1	0	3
Path	0	0	0	0	0

Exhaustion results

Number of unstable binary preference graphs

Why is it unstable?

Exhaustion results

Number of unstable binary preference graphs

A more interesting example

A more interesting example

Generalization: Add agents to D

Results

Does a stable arrangement always exist?

On cycles

\# Values	\# Classes	≤ 2
2	Yes	No 1
≥ 3	Yes	No

On paths
${ }^{1}$ With negative preferences

Results

Does a stable arrangement always exist?

\# Values	\# Classes	≤ 2	3
2	Yes	Yes	No
≥ 3	Yes	No	No

On cycles

\# Values	\# Classes	≤ 2
2	Yes	No 1
≥ 3	Yes	No

On paths
${ }^{1}$ With negative preferences

A quick word on complexity

Hopefully in poly-time...

Bounded number of classes

Keep track of:

- Occurrences of triplets
- Occurrences of classes
$O(1)$ variables
- Three last agents

Non-deterministic algorithm that guesses a arrangement and checks its stability in $O(\log N)$ space.
$\Longrightarrow \exists$ deterministic algorithm in poly-time.

Complexity results

\# Classes	Bounded	Unbounded
Cycles	Poly-time	
Paths	Poly-time	

Complexity results

\# Classes	Bounded	Unbounded
Cycles	Poly-time	NP-hard 2
Paths	Poly-time	NP-hard 3

${ }^{2}$ With 4 non-negative values ${ }^{3}$ With 6 values, including negatives
[1] Ceylan, E., Chen, J., Roy, S.: Optimal seat arrangement: What are the hard and easy cases? In: Elkind, E. (ed.) IJCAI'23. pp. 2563-2571 (8 2023)

Conjectures

\# Classes	Bounded	Unbounded	Unbounded with binary values
Cycles	Poly-time	NP-hard 2	
Paths	Poly-time	NP-hard 3	

Conjectures

\# Classes	Bounded	Unbounded	Unbounded with binary values
Cycles	Poly-time	NP-hard 2	NP-hard?
Paths	Poly-time	NP-hard 3	Poly-time?

6.
 Summary

For those who fell asleep

Does a stable arrangement always exist?

\# Values	Classes	≤ 2	3
2	Yes	Yes	No
≥ 3	Yes	No	No

On cycles

\# Values	\# Classes	≤ 2
2	Yes	No 1
≥ 3	Yes	No

On paths
${ }^{1}$ With negative preferences

Complexity

\# Classes	Bounded	Unbounded
Cycles	Poly-time	NP-hard 2
Paths	Poly-time	NP-hard 3

${ }^{2}$ With 4 non-negative values
${ }^{3}$ With 6 values, including negatives

Thank you!

Does a stable arrangement always exist?

\# Values	Classes	≤ 2	3
2	Yes	Yes	No
≥ 3	Yes	No	No

On cycles

\# Values	Classes	≤ 2
2	Yes	No 1
≥ 3	Yes	No

On paths
${ }^{1}$ With negative preferences

Complexity

\# Classes	Bounded	Unbounded
Cycles	Poly-time	NP-hard 2
Paths	Poly-time	NP-hard 3

${ }^{2}$ With 4 non-negative values
${ }^{3}$ With 6 values, including negatives

