Stable Dinner Party Seating Arrangements

Damien Berriaud Andrei Constantinescu Roger Wattenhofer

Distributed **Co**mputing Group

A chaotic dinner

When the round table wreaks havoc

Like ≥ 3

Preference graph

Preference graph

Preference graph

 $U(\clubsuit) = P(\clubsuit \to \) + P(\clubsuit \to \))$

 $U(\clubsuit) = P(\clubsuit \rightarrow \clubsuit) + P(\clubsuit \rightarrow) = 1$

Chaos? Run...

Chaos? Run...

Both **strictly** improve!

Chaos? Run & Chase!

Chaos? Run & Chase!

Chaos? Run & Chase!

Unstable preferences = There is no stable arrangement!

A few definitions

k-valued

\iff

Preferences use **at most k** values.

A few definitions

k-valued

\iff

Preferences use **at most k** values.

i.e.

$egin{aligned} orall x,y, P(x o y) \in \ O \ & |O| \leq k \end{aligned}$

A few definitions k-valued Preferences use at most **k** values. i.e. $orall x,y, P(x ightarrow y)\in O$

 $|O| \leq k$

Preferences use **at most** *k* classes.

k-class

A few definitions

k-valued

Preferences use at most **k** classes.

k-class

Indistinguishable agents One class

 $orall x,y,P(x
ightarrow y)\in\ \{0,1,2\}$:

 $orall x,y,P(x
ightarrow y)\in\ \{0,1,2\}$: **3**-valued

1

 ≥ 3

2

 $\neq \overset{\diamond}{\downarrow} \neq \overset{\circ}{)}$

$orall x,y,P(x ightarrow y)\in\ \{0,1,2\}$

3-valued

Does a stable arrangement always exist?

# Classes # Values	≤ 2	3	≥ 4
2			
≥ 3		No	No

On **cycles**

And on a path?

Irregularity at the extremities:

And on a path?

Irregularity at the extremities:

Either use **negative** preferences,

And on a path?

Irregularity at the extremities:

Either use **negative** preferences,

Or consider **more** agents.

Does a **stable** arrangement always exist?

# Classes # Values	≤ 2	3	≥4
2			
≥ 3		No	No

On **cycles**

Classes
Values ≤ 2 ≥ 3 22 \sim ≥ 3 \sim \sim

On **paths**

Does a stable arrangement always exist?

# Classes # Values	≤ 2	3	≥4
2			
≥ 3		No	No

On **cycles**

Classes
Values ≤ 2 ≥ 3 22No¹ ≥ 3 No

On **paths**

¹ With negative preferences

Stability of 2-class preferences

A story in Red & Blue

Stability of 2-class preferences

A story in Red & Blue

If there is a **self-prefering** class:

If there is a **self-prefering** class:

Otherwise:

Does a **stable** arrangement always exist?

On **cycles**

Classes
Values ≤ 2 ≥ 3 22No¹ ≥ 3 No

On **paths**

With negative preferences

Does a **stable** arrangement always exist?

# Classes # Values	≤ 2	3	≥4
2	Yes		
≥ 3	Yes	No	No

On **cycles**

Classes
Values ≤ 2 ≥ 3 2YesNo¹ ≥ 3 YesNo

On **paths**

With negative preferences

Adding one class?

Headaches incoming...

3

Adding one class?

Headaches incoming...

3

Case analysis

• If there is a **self-liking** class:

• If there is a **self-liking** class:

Case analysis

• If there is a **self-liking** class:

• Else if a class **likes / is disliked by** all others:

Case analysis

• If there is a **self-liking** class:

• Else if a class **likes / is disliked by** all others:

• Else, preferences are

Potential argument.

Does a **stable** arrangement always exist?

# Classes # Values	≤ 2	3	≥ 4
2	Yes		
≥ 3	Yes	No	No

On **cycles**

Classes
Values ≤ 2 ≥ 3 2YesNo¹ ≥ 3 YesNo

On **paths**

' With negative preferences

Does a **stable** arrangement always exist?

# Classes # Values	≤ 2	3	≥ 4
2	Yes	Yes	
≥ 3	Yes	No	No

Classes
Values ≤ 2 ≥ 3 2YesNo¹ ≥ 3 YesNo

On **cycles**

On **paths**

'With negative preferences

Unstable binary preferences

Exhausted? We're getting there...

Unstable binary preferences

Exhausted? We're getting there...

# Classes # Values	≤ 2	3	≥4
2	Yes	Yes	
≥ 3	Yes	No	No
On cvcles			

Exhaustion results

Number of **unstable** binary preference graphs

N	3	4	5	6	7
Cycle	0	0	1	0	3
Path	0	0	0	0	0

Exhaustion results

Number of **unstable** binary preference graphs

Why is it unstable?

С

A

С

D

Е

В

D

В

Exhaustion results

Number of **unstable** binary preference graphs

A more interesting example

A more interesting example

Does a **stable** arrangement always exist?

# Classes # Values	≤ 2	3	≥4
2	Yes	Yes	
≥ 3	Yes	No	No

Classes
Values ≤ 2 ≥ 3 2YesNo¹ ≥ 3 YesNo

On **cycles**

On **paths**

'With negative preferences

Does a **stable** arrangement always exist?

# Classes # Values	≤ 2	3	≥4
2	Yes	Yes	No
≥ 3	Yes	No	No

Classes
Values ≤ 2 ≥ 3 2YesNo¹ ≥ 3 YesNo

On **cycles**

On **paths**

' With negative preferences

A quick word on complexity

Hopefully in poly-time...

Bounded number of classes

Keep track of:

- Occurrences of triplets
- Occurrences of classes
- Three last agents

O(1) variables

Non-deterministic algorithm that guesses a arrangement and checks its stability in $O(\log N)$ space.

$\Rightarrow \exists$ deterministic algorithm in poly-time.

Complexity results

# Classes	Bounded	Unbounded
Cycles	Poly-time	
Paths	Poly-time	

Complexity results

# Classes	Bounded	Unbounded
Cycles	Poly-time	NP-hard ²
Paths	Poly-time	NP-hard ³

² With 4 non-negative values ³ With 6 values, including negatives

[1] Ceylan, E., Chen, J., Roy, S.: Optimal seat arrangement: What are the hard and easy cases? In: Elkind, E. (ed.) IJCAI'23. pp. 2563–2571 (8 2023)

Conjectures

# Classes	Bounded	Unbounded	Unbounded with binary values
Cycles	Poly-time	NP-hard ²	
Paths	Poly-time	NP-hard ³	

Conjectures

# Classes	Bounded	Unbounded	Unbounded with binary values
Cycles	Poly-time	NP-hard ²	NP-hard?
Paths	Poly-time	NP-hard ³	Poly-time?

Summary

6.

For those who fell asleep

Does a stable arrangement always exist?

# Classes # Values	≤ 2	3	≥4
2	Yes	Yes	No
≥ 3	Yes	No	No

On **cycles**

# Classes # Values	≤ 2	≥3
2	Yes	No ¹
≥ 3	Yes	No

On **paths**

'With negative preferences

Complexity

# Classes	Bounded	Unbounded
Cycles	Poly-time	NP-hard ²
Paths	Poly-time	NP-hard ³

² With 4 non-negative values

³With 6 values, including negatives

Thank you!

Damien Berriaud

Does a stable arrangement always exist?

# Classes # Values	≤ 2	3	≥4
2	Yes	Yes	No
≥ 3	Yes	No	No

On **cycles**

# Classes # Values	≤ 2	≥3
2	Yes	No ¹
≥ 3	Yes	No

On **paths**

'With negative preferences

Complexity

# Classes	Bounded	Unbounded
Cycles	Poly-time	NP-hard ²
Paths	Poly-time	NP-hard ³

² With 4 non-negative values

³With 6 values, including negatives